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1 Introduction 
The eco16 cores are a family of 16-bit microprocessors for embedded application. The eco16b base ISA is 
targeted at general purpose embedded control and computing applications. The eco16d extension ISA adds 
advanced 16-bit DSP features to the base ISA. The eco16i extension ISA adds 4-way SIMD (Single 
Instruction Multiple Data) DSP features and is specifically targeted at image processing and video 
applications. 
This MPEG4 video decoder test has been implemented to evaluate the video performance of the eco16i ISA 
and the eco16il implementation. MPEG4-ASP (Advanced Simple Profile) video was chosen because it is still 
widely used today based on the popular XviD and DivX codecs and because of the medium complexity 
compared to the older MPEG1/2 codecs and the newer MPEG4-AVC codec. 
The MPEG4 video decoder is entirely written in assembly. A C compiler for the eco16 processor was not yet 
available at the time the decoder was implemented. The performance critical routines are highly optimized 
and can be reused for commercial video decoder implementations. 

2 Decoder details 

2.1 Features 
• Decodes MPEG4 elementary streams with I,P and B-VOPs 
• Supports picture width up to 720 pixels (limited by local memory buffers) 
• Supports picture sizes up to 1620 macroblocks (SD video, limited by local memory buffers) 
• Uses 2 external memory buffers per frame: 1. luma, 2. interleaved chroma 
• Implements a 2-stage macroblock processing pipeline to compensate for the latency of DMA based 

prediction reads from external memory 
A number of MPEG4-ASP features are not supported. 

• Global motion 
• Quarter PEL motion compensation 
• Non rectangular shapes of the video object plane 
• Interlaced video 
• Overlapped block motion compensation 
• Sprites 
• Non 8-bit per pixel resolution 
• Reduced resolution VOPs 
• Scalability 

These features are rarely used, most XviD and DivX encoded video streams can be decoded without them. 
The decoder has been tested with a number of video clips from different sources (encoders). 

2.2 Concept 
This software video decoder is optimized for highest performance efficiency (low processor MHz 
requirement). It is targeted at systems that have local memory with zero wait states access for macroblock 
decoding. Frame buffers are mapped into the main memory pool which can be external DRAM or on-chip 
SRAM/DRAM with some access latency. The required source data (e.g. temporal predictions) are transferred 
to the local memory by DMA operations. Decoded macroblock data are transferred to main memory frame 
buffers by DMA operations. Because the actual decoding accesses only the local zero wait state memory 
there are no performance penalties caused by main memory access latency. 

2.3 Macroblock pipeline 
DMA operations to read predictions from external memory frame buffers take some time to complete. A 
software decoder that processes one macroblock at a time would have to wait for these DMA operations 
before performing the remaining steps of macroblock decoding (prediction filtering, forward/backward 
interpolation, residual add). 
To avoid waiting for prediction reads this decoder implements a 2-stage macroblock processing pipeline for 
P-VOPs and B-VOPs. There are two macroblock data structures with type, motion vectors, prediction 
buffers, and block coefficient buffers. The decoder switches between the two structures with every 
macroblock. For each new macroblock the decoder first reads the header, calculates motion vectors and 
sets up prediction read DMA operations. Next the decoder reads the block coefficients and stores them in a 
buffer. Then it goes back to the preceding macroblock and waits until all prediction read DMA operations for 
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that macroblock have completed. In most cases there is no waiting and the prediction reads have completed 
already. The decoder then performs the remaining processing steps on the preceding macroblock (prediction 
filtering, prediction interpolation for bidirectional macroblocks, IDCT and residual add) and sets up a DMA 
operation to transfer the decoded macroblock to an external memory frame buffer. I-VOP decoding 
processes one macroblock at a time because there are no prediction reads from external memory.  

2.4 Co-located motion vectors 
MPEG4-ASP with I-VOPs and P-VOPs requires some buffer space for DC/AC and motion vector predictors. 
Data for a few more than one row of macroblocks need to be buffered which is a reasonably small space to 
be mapped into the local memory for fast access. However to support B-VOPs the motion vectors of all P-
VOP macroblocks need to be buffered to be used as predictors in subsequent B-VOPs. For e.g. SD 
(Standard Definition) video with a maximum of 1620 macroblocks per frame the required buffer space would 
be ~26kBytes (1620 * 16 Bytes) which is too costly to be mapped into the local memory. The decoder 
implements a compromise between local memory size and fast access. 
The main memory has a buffer for all motion vectors of one frame (four motion vectors with 2 x 16-bit each). 
A single cache buffer for one row of macroblocks is mapped into the local memory. For SD video the 
required buffer size is 45 * 16 bytes = 720 bytes. When a P-VOP is decoded the motion vectors are stored in 
the local buffer. At the end of each macroblock row the decoder sets up a DMA operation that transfers the 
local buffer content to the main memory buffer. When a B-VOP is decoded a DMA operation is set up at the 
beginning of each macroblock row to transfer the motion vectors from the corresponding row from the main 
memory to the local memory buffer. During B-VOP macroblock decoding collocated motion vectors from the 
preceding P-VOP are read from the local memory buffer. 

2.5 Memory footprint 
The table below shows the total memory space requirements of the MPEG4-ASP video decoder. 
 

ISA Text (instruction code) Variable data Constant data 
eco16i 12482 Bytes 10kBytes incl. stack 3000 Bytes 

2.6 Performance Enhancements 
The decoder implements a number of performance improvement features. The most important ones are 
listed below: 

• Macroblock processing using local memory data only, main memory access latencies are hidden. 
• Special IDCT routines are used for blocks with 

o only the DC coefficient non-zero 
o non-zero coefficients only in row 0 and 
o non-zero coefficients only in column 0 

• For inter macroblocks IDCT and residual add are done in one step 

3 Test Environment 
To enable fair comparison with competing solutions the environment for performance measurements must 
be described especially any acceleration hardware but also any software functions that count into the 
measured numbers and are not necessarily required for a pure decoder software. 
The MPEG4 decoder test environment has three hardware support functions: 

• A bit string reader peripheral that allows the processor to read non-aligned bit strings from 1 to 16 
bits length from the compressed video stream. 

• A DMA engine that is used to transfer decoded macroblocks and collocated motion vectors from the 
processor’s local RAM to the frame buffer memory. The input channel is used to read back 
collocated motion vectors from external memory 

• A prediction reader (special DMA engine) to transfer prediction sample arrays from external memory 
frame buffers to local memory buffers. This engine is aware of the picture size and correctly handles 
out of frame references (edge pixel replication). 

Besides the macroblock processing which takes most of the processor cycles the following software 
functions are included in the performance numbers: 

• Parsing of the higher layers (video object layer, VOP, …) 
• Assignment of frame buffers 
• Setup of DMA operations 
• Interrupt service routine for the prediction reader engine 
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• Test bench functions for the display of decoded macroblocks 

4 Test Results 
Performance has been measured on a number of video clips from various versions of the XviD and DivX 
encoders. The clips have different bit-rates, picture sizes and picture type sequences. The tests have been 
done in an environment with zero wait state instruction and local data memories. The latencies of DMA reads 
(collocated motion vectors) and prediction reads from the main memory are calculated using a realistic 
minimum cycle count plus a random number adder. 
The table below shows the performance measurement results. For each stream performance numbers of the 
eco16i and the eco16il are given.  
The first columns of the table contain video clip properties: 

• Picture size in pixels horizontal (suffix h) and vertical (suffix v) 
• Clip length, total number of VOPs (frames) in the first row and I/P/B VOPs in the second row 
• Frame rate in frames per second 
• Average bit rate in Kbits/s 

Performance is expressed by two MHz numbers. The first row number is the average required MHz over the 
entire clip (suffix a). The second row number is the average MHz requirement over the worst frame of the clip 
(suffix w). 
 

clip size VOPs fps Kbits/s eco16i eco16il 

1 
480h 
224v 

171 
2/86/83 25 758 21.8a 

37.6w 
25.2a 
43.0w 

2 
480h 
224v 

158 
3/64/91 25 716 20.5a 

47.7w 
23.2a 
53.4w 

3 
480h 
272v 

611 
8/207/396 25 625 

17.4a 
77.8w 

23.1a 
103.8w 

4 
544h 
416v 

134 
3/66/65 23,98 2278 45.5a 

112.4w 
51.8a 

125.7w 

5 
720h 
304v 

48 
6/38/4 25 4075 67.3a 

131.6w 
76.1a 

146.2w 

6 
640h 
272v 

142 
3/139/0 24 1013 25.4a 

75.3w 
29.3a 
84.8w 

7 
640h 
272v 

76 
15/43/18 25 3466 58.4a 

93.9w 
64.8a 

104.8w 

8 
352h 
256v 

286 
3/109/174 25 968 20.9a 

61.8w 
23.5a 
67.7w 

9 
640h 
256v 

114 
4/57/53 25 2467 

44.1a 
129.0w 

49.6a 
141.8w 

10 
704h 
576v 

57 
1/56/0 25 3053 76.4a 

147.0w 
89.5a 

168.9w 

 
The test results show that the eco16i ISA and the eco16il implementation are well suited for MPEG4-ASP video decoding 
up to VGA (640x480) and SD (720x480) picture size with up to 30 frames/s. Typical average bit rates for streams with 
these parameters are ~2 Mbits/s. Some of the test clips have significantly higher bit rates to show the processor 
performance under difficult conditions. 
It can be noted that for some test clips the processor load for the worst case frame is significantly higher than the 
average load. Especially for clip 3 the worst frame load is more than 3X higher than the average. This is because most of 
the test clips are difficult to decode clips. They have been encoded with ‘constant high quality’ (quantization) rather than 
constant bit rate to challenge the decoder and get worst case numbers. For real life software video applications, e.g. 
PMPs typically more decoder friendly video content is used to avoid overloading the processor. 

4.1 Reasons for the relatively low IPC of the eco16il 
 
It can be noted that the eco16il implementation takes some more cycles than the eco16i reference model. The average 
IPC (Instruction Per Cycle) for the eco16il is in the range of 0.75 – 0.9. This means that up to ~25% of the cycles are lost 
through processor stalls or pipeline bubbles. The following paragraphs give the main reasons for this relatively low IPC 
and describe how the MHz requirements can be decreased by adding hardware resources in systems where lowest MHz 
and power are most important. 
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4.1.1 Instruction Latency 
With its large number of 64 x 16-bit registers that can be accessed as vectors and scalars the complexity and 
depth of the data dependency logic (to detect stall conditions) is significantly higher as for most other 
processor of the eco families. To keep the logic depth at a reasonable level (enable high clock rates) only a 
minimum number of operand forwarding cases is implemented. As a consequence some instruction groups 
have increased latency compared to most other eco processor implementations. E.g. the latency from load to 
computation/multiply/store instructions is 4 instead of 3 cycles. The latency from computation/multiply to 
store instructions is 2 instead of 1 cycle. The latency from computation to multiply is 2 instead of 1 cycle. 
Especially in the symbol decode routines where load latency can’t be compensated by instruction reordering 
the load latency creates a lot of lost cycles. 
The situation can be improved with additional hardware acceleration for symbol decode, e.g. a module that 
autonomously decodes single symbols and symbol sequences and writes the into the processor data 
memory through DMA. 

4.1.2 Loops with 32-bit opcode instructions only 
Many of the inner loops of DSP processing consist of only extension instructions with 32-bit opcodes. 
Fetching of instructions is not faster than consumption in the execution units and the decoupling buffer 
between instruction fetch and execution cannot be filled. As a consequence branch instructions that jump 
back to the beginning of the loop take two cycles effective. With a filled decoupling buffer loop branches take 
zero cycle effective and help to compensate for cycle that are lost elsewhere. 
This cycle loss could be avoided by implementing a single entry loop cache in the processor’s instruction 
fetch unit. Such a cache enables zero cycle loop back branches from the second pass through the loop. Only 
the first branch back takes two cycles. 

4.1.3 Blocking of the ALU 
The decoding of P-VOPs and B-VOPs includes a step where residuals (IDCT result) are added to the 
prediction samples. For best performance the decoder does this in one step with the IDCT computation. The 
addition of the prediction samples is done using ADDVI instructions with one memory source operand. 
These instructions use the ALU three cycles after they have been issued (assuming no bus wait states). 
Subsequent instructions with no memory source operands that use the ALU are stalled as long is the ALU is 
block by instruction that have been issued previously. 
A possible workaround is to send blocked instructions through the memory pipeline (as if they had memory 
source operands). Lost cycles can be saved only if at some point in the instruction sequence instructions that 
do not use the ALU follow, e.g. store instructions to store the computed results. The described workaround 
required additional control logic and data path registers in the processor. 


