~

RACORS

sf16

Family of
16-bit microprocessors

Base ISA Reference Manual

Revision 1.0
05 December 2013

Author: Martin Raubuch

Property of RACORS GmbH

(QR’S sf16 base (b) ISA Reference Manual

05.12.2013
RACO
Revision History
Revision | Date
0.9 13Dec2012 | First version, largely derived from the sf32b ISA reference manual
1.0 05Dec2013 | Review with typo fixed, property note changed to RACORS GmbH
2 Property of RACORS GmbH Rev. 1.0

l@’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS
Table of contents
R @ Y1 1 PP 4
0 A [V 0T [Tod 1 o] o TP 4
1.2 FEAUIE SUMIMEIY ..cuuiiiiiiiie ettt e et e e e e e e e e e e e e e e e e e e et n e et e e eeaaneaes 4
1.3 Scope of thiS MANUALoooiiiii e 4
1.4 Structure of thiS MANUAL............coviiiiiiiiiiiiie e 4
2 DEIINITIONS. ... e aaa 6
2.1 RegiSter SPECIfICALIONSuuuuiiiiiie et ar 6
2.2 Constant SPECITICALIONSuuuuiiiii e e e e 6
2.3 Miscellaneous defiNItIONScoiiiiiiiiiiiiii e 7
3 Programming MOAElcooviiiiiiiii e e 8
3.1 INSrUCtION AAAIESS SPACEeeeeiieeeiiiitiii ettt e et e e e e e e e e araa e e e e e 8
3.2 Data A00rESS SPACEcciiieeeiiiiii e e e e e ee e et et e e e e e e e e e et e e e e e e a i —————— 8
TR T = U=To 51 1= £ TSP 8
4 INSLrUCTION SEL SUMIMIEIYiiiii e e et e e e et e e e e e eaa e eenen 13
2 R Ao [[£ =11 [T [0 oo = 13
A 1 0153 1 11 T 1 1 USSP 14
5 Reset, Interrupts & Debug-Support..........cooiieiiiiiii e, 17
O, RSB e 17
I | 01 (=T (0] o] £ S PTP PPN 17
S TRC T B =1 o 10 o TR o o Yo g o5 18
O O o1 =T g o [I8/ o1 T 21
G0t R =T = To PP 21
6.2 CoNStant OPErand tYPES.....uuuuuiiieeeeei it e e e e et e e e e e e e e e e e e e 21
6.3 RegISter OPErand LYPES...ccuuuuuiiii ettt e e e e e e 24
6.4 Memory operand addreSSINGccoveuuuruuuiiiiieeerreeeii e e e e 27
6.5 INSIrUCHION @dArESSING.....cceutuiiiiiiiee it e e e e e eana s 30
7 Load, store and move INSTFUCHIONSccuuuiiiiiiiiiiiie e 31
4% R O o 10 o o I o (o] 0= =1 31
A A N =T [To PP 31
7.3 INSITUCHON ELAIIS. ... uuuuuiiiiiiiiiiiiiiiiit it nnnnnnnne 32
8 Computation INSTIUCTIONSccuuiiiiiiiie e 35
8.1 COMMON PrOPEITIES ...ttt ettt e e e et e e e e e e e e e e aa b e e e e e e e e eesnnnnnnn s 35
S A I =T | o R 35
8.3 ArthMEtiC INSTIUCIONSceeviiiiiii it eeaae s 36
S S o o (o3l 1 1S3 {1 (o 1o 1 41
8.5 ShIft INSIIUCTIONS ...t e e e e e aaaa s 42
8.6 Bit manipulation INSITUCHIONSccoiiiiiiiiiie e e e e e 43
8.7 MUIIPIY INSIFUCTIONS ... e eana s 44
9 Flow coNtrol INSIIUCTIONSuuuiiiiiiiiii et eeeaee 45
S 00 R O o 010 0o o I o (o] 0= 1= 45
S A =T [o PP 45
9.3 INSIIUCHON ELAIIS. ... uuuuiiiiiiiiiiiiiiiiiitit bbb nnnnnnane 46
INSTIUCTION COOING ... ieitiiei e e et e eaa e eeeas 51

3 Property of RACORS GmbH Rev. 1.0

l@’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS

1 Overview

1.1 Introduction

The sf16 family of 16-bit microprocessors is targeted at embedded control applications that have high
performance requirements and are satisfied with a direct addressable data space of 64kBytes. With fixed
length 16-bit instruction coding the architectural focus is on high clock rates and small core implementations.

Besides the base (b) ISA defined in this manual the family includes a (d) DSP ISA extension for small 16-bit
DSP applications. The (d) DSP ISA extension is defined in a separate manual.

The base ISA is a 16-bit general purpose load/store architecture. Accesses to memory data operands and
computations are decoupled by using separate instructions. Memory operands are accessed by load/store
instructions exclusively. Computation instructions have register or constant source operands and register
destination operands. This concept supports the implementation of variants with different pipeline structures
and sizes. High level language compilers can schedule instructions in an optimal order for efficient execution
with minimal stalls and pipeline bubbles.

1.2 Feature Summery

The following list summarizes the sf16b’s main features

* Load/store architecture

« Harvard architecture with separate instruction and data address spaces
e 128 kBytes instruction address space and 64 kBytes data address space
» Fixed length 16-bit instruction coding

« Eight 16-bit general purpose registers and eight special registers

« Support for 8-bit and 16-bit signed and unsigned integer data types

« Instructions to support higher precision operands > 16 bits

* Rich set of load/store addressing modes

< Bit manipulation & test instructions: set, clear, toggle & test

e 16*16 multiply instructions with either 16-bit high word or 16-bit low word results
e 16 interrupts with programmable start addresses

« Flexible debug support for application optimized debug concepts

e 16-bit loop counter

1.3 Scope of this manual

This sf16 base ISA reference manual contains the following detailed descriptions:

* Instruction set

e Instruction coding

* Size and endianess of instruction and data address spaces

« Registers of the programming model (user registers)

* Register and memory operand types

* Register and memory operand addressing modes

e Interrupt concept

« Debugging concept

Implementation specific details such as 1/O signals, cycle by cycle timing of instructions, operand
dependencies and latencies are not part of this ISA reference manual. These details are described in the
IMA (Implementation Architecture) reference manual of each implementation.

1.4 Structure of this manual

Below are brief descriptions of the following chapters of this manual:

Definitions , acronym definitions for registers, constants and other sf16 base ISA specific items that are
used in the remaining chapters of the document.

Programming model , describes the address spaces and user registers

4 Property of RACORS GmbH Rev. 1.0

(Q’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS

Instruction set summery , brief descriptions of addressing modes and instructions divided into functional
groups

Reset, Interrupts & Debug Support , defines the reset state, interrupt concept and software debug support
concept.

Operand Types , defines bit accurate details of how operands are generated or calculated, defines operand
addressing modes

Load, store and move instructions , defines bit accurate details of the operations and addressing modes of
these instructions

Computation instructions , defines bit accurate details of the operations and addressing modes of these
instructions

Flow control instructions , defines bit accurate details of the operations and addressing modes of these
instructions

Instruction Coding, tables with instruction coding details in alphabetical order

5 Property of RACORS GmbH Rev. 1.0

RACO

lQR’S sf16 base (b) ISA Reference Manual 05.12.2013

2 Definitions

2.1 Register Specifications

This section defines the variables and notations used to specify register operands in addressing mode and
instruction descriptions.

Rn
Rs

RsO

Rs1

Rd
Rb

Rx

SRn
SRs
SRd
SRLd
An

Ad
RGS

one of the eight general purpose registers RO, R1, R2, R3, R4, R5, R5 or R7.

one of registers Rn used as source operand, Rs is used in addressing modes with a single
register source operand

one of registers Rn used as source operand 0, RsO specifies the first source operand
(assembly language operand fields) in addressing modes with two source operands; for non-
commutative operations like subtract or compare RsO is the operand on the right side of the
operator, e.g. for subtract and compare instructions the operation is Rs1 - Rs0. If used with
indirect shift or bit manipulation instructions Rs0 contains the shift-count, or bit-index
operands.

one of registers Rn used as source operand 1, Rs1 specifies the second source operand
(assembly language operand fields) in addressing modes with two source operands; for non-
commutative operations like subtract or compare Rs1 is the operand on the left side of the
operator, e.g. for subtract and compare instructions the operation is Rs1 - RsO.

one of registers Rn used as destination operand.

one of registers Rn used as both source and destination operand. In addressing modes with
two source operands Rb is source operand 1.

one of registers Rn used as index in the indirect data memory addressing mode with scaled
index. The effective address of the data memory access is Rx shifted left by the size of the
operand and added to the content of the indirect address register An.

one of the eight special registers CC, CS, LC, AU, SP, TA, SA or ID.

one of the special registers SRn used as source operand

one of the special registers SRn used as destination operand

one of the low order special registers CC, CS, LC or AU used as destination operand

one of the four registers SP, TA, R6 or R7 used as indirect memory address in addressing
modes with memory source or destination operands.

one of registers An used as destination operand.

specifies a selection of registers for load and store instructions with multiple source or
destination operands; the selection can include one or more of the following registers: RO,
R1, R2, R3, R4, R5, R6, TA, SA.

2.2 Constant Specifications

This section defines the acronyms and notations used to specify constant operands in addressing mode and
instruction descriptions.

Acronyms for constants with a value range have an optional one or two-character suffix. The first character
has the following meaning: U (Unsigned) or S (Signed) or A (Asymmetric). The second character N means:
Not including zero.

C7y

C7un

C7sn

C8y

C8un

7-bit constant (unsigned) used as source operand of move instructions; legal values are from
0to 127.

7-bit constant (unsigned, not including zero) used as source operand of move instructions;
legal values are from 1 to 128.

7-bit constant (signed, not including zero) used as source operand of move and computation
instructions; legal values are from -64 to -1 and from 1 to 64.

8-bit constant (unsigned,) used as source operand of computation instructions; legal values
are from O to 255.

8-bit constant (unsigned, not including zero) used as source operand of computation
instructions; legal values are from 1 to 256.

Property of RACORS GmbH Rev. 1.0

l" sf16 base (b) ISA Reference Manual 05.12.2013
RACORS

C8a 8-bit constant (asymmetric) used as source operand of compare instructions; legal values
are from -64 to -1 and from 0 to 255.

C9g 9-bit constant (signed) used as source operand of move instructions; legal values are from -
256 to 255.

Cl6 16-bit constant used as source operand with the addh instruction, legal values are from
0x0000 to OxFFO0O; bits [7:0] are not coded and are always zero.

DO5¢ 5-bit scaled data address offset (signed) used in an indirect memory addressing mode. Legal
values are from -16 to 15 for byte accesses and from -32 to 30 (even values only) for short
accesses.

DA8 8-bit scaled direct data address used in the direct memory addressing mode, Legal values
are from 0 to 255 for byte accesses and from 0 to 510 (even values only) for short (16-bit)
accesses.

SHC4 4-bit shift count used in addressing modes for shift instructions. Legal values are from 0 to
15

BTI4 4-bit bit index used in addressing modes for bit-manipulation instructions, legal values are
from 0 to 15

IAH4 4-bit direct instruction address high; used with a special flow instruction to preset the high
bits of a 16-bit direct instruction address. Legal values are from 1 to 15.

08¢ 8-bit instruction address offset (signed) used with branch instructions. Legal values are from
-128 to 127

IA12 12-hit direct instruction address; used in an addressing mode for jump and jump to

subroutine instructions. Legal values are from 0x0000 to OXOFFF.

2.3 Miscellaneous definitions

opcode
eda

eia

operation code of an instruction; contains sub codes that specify the instruction type and the
operands. The sf16 has fixed length 16-bit opcodes stored in the instruction memory

effective data address, a 16-bit byte address that points to an operand in the data address
space, eda addresses need not be aligned on the size of the operand.

effective instruction address, a 16-bit word address that points to a 16-bit opcode word in
the instruction address space.

Property of RACORS GmbH Rev. 1.0

RACO

lQR’S sf16 base (b) ISA Reference Manual

05.12.2013

3 Programming model

3.1 Instruction address space

3.1.1 Size and addressing scheme

The sf186 processors have a 128kBytes instruction address space. Instruction addresses are 16 bits and
point to 16-bit opcode words in the instruction memory.

3.1.2 Endianess

The sf16 implements a little endian scheme to map 16-bit opcodes to memory words. In case the instruction
interface is wider than 16 bits (e.g. 32-bit or wider in super-scalar implementations) the lower address is
mapped to the lower bits of the memory word.

3.2 Data address space

3.2.1 Size and addressing scheme

The sf16 processors have a 64kBytes data address space. Data addresses are 16 bits and point to byte
locations in the data memory. The base ISA supports byte (8-bit) and short (16-bit) memory operands.

3.2.2 Operand types

Operands accessed in the data address space can be unsigned or signed (2's complement). Inside the
processor all arithmetic is done on 16-bit operands. Byte operands are zero-extended to 16 bits when loaded
from memory into one of the general purpose registers. When a signed byte operand is loaded from memory
an sxbt (sign-extend byte) instruction must follow to make sure the register value represents the correct 16-
bit 2's complement format of the signed byte value. When register operands are stored to memory they are
truncated to the size of the destination operand. When storing a byte value to memory the 8 MSBs of the
source register are discarded.

3.2.3 Alignment

The sf186 processors do not handle misaligned memory operands internally. For 16-bit accesses the LSB is
ignored. However the full data space address including the LSB is output to the data bus with every access
regardless of the operand size. If required by an application misaligned operands can be supported by the
memory controller. The processor’s data bus signals provide both the size of the access and the full byte
address.

3.2.4 Endianess
The sf16 implements a little endian scheme to map 8-bit and 16-bit data operands to memory words.

3.2.5 Summery table

The table below illustrates the mapping of data operands into 16-bit memory words. All operands are aligned
to memory words and to their own size.

16-bit Memory words 3 2 1 0
Memory addresses n+6 n+4 n+2 n
Short (16-bit) operands 3 2 1 0
Short operands addresses n+6 n+4 n+2 n
Byte (8-bit) operands 7 6 5 4 3 2 1

Byte operands addresses n+7 | n+6 | n+5 | n+4 | n+3 | n+2 | n+1 n

3.3 Registers

3.3.1 Terminology

Register values are represented with the LSB at the right most bit position and the MSB at the left most bit
position. For an n-bit register the LSB is bit number 0 and the MSB is bit number n-1.

8 Property of RACORS GmbH Rev. 1.0

(Q’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS

If a register contains multiple named bits or bit-fields then these individual bits or bit-fields are referenced by
the register name followed by a ‘.’ character as separator and then followed by the name of the named bit or
bit-field as shown below:

<register name>.<bit or bit field name>

For registers that contain a single named bit-field this bit-field has the same name as the register. For
example, special register LC contains a single 32-bit bit-field with the name LC.

3.3.2 sf16 Registers

General Purpose Registers
1514131211109876543210 Rn
rRe RO 0
rRT R1 1
R2 ' - R2 2
R3 ' - R3 3
R4 ' ‘ R4 4
RE ' ' RE 5 An
rRe RE 6 2
Rz R7 7 3
Special Registers
151413121110987654 32 1 0 SR
reserved . E - . N | Zz| clcjcc o
res |AS| IS | E |IR] ' WPT ' cs 1
- ' LC ' - lc 2
AU ' - AL 3 An
SP__ ' ‘ SE 4 0
A ' ' TA 5 1
A SA 6
REV — IMA _ISA FML = 5 D 7

3.3.3 Register Details

The sf16 has two register spaces referred to as Rn (General Purpose Registers) and SRn (Special
Registers). Individual registers of these spaces are addressed by 3-bit fields in instruction opcodes. A third
logical group An is defined that contains special registers SP and TA and general purpose registers R6 and
R7. Registers of the An group can be used as indirect address and are addressed by 2-bit fields in
instruction opcodes.

The general purpose registers Rn can be used as source or destination operands of any computation or
load/store/move instruction. General purpose registers can also be used as index operand in memory
addressing modes.

The special registers SRn have dedicated functions and are implicitly used as source and/or destination of
certain instructions. Beyond these dedicated functions they cannot be used as source or destination of
computation instruction. Dedicated move instructions are available to transfer values from a general purpose
register and vice versa. Some special registers can be source or destination of load/store instructions (as
part of a register selection), some can be used as indirect address and some can be loaded directly with a
constant value.

A special case is the SA register which represents two underlying physical registers. When the AS flag in
register CS is clear the actual SA physical register (Subroutine Address) is accessed. When the AS flag in
register CS is set the interrupt address register is accessed. This hidden register is used to store the return

9 Property of RACORS GmbH Rev. 1.0

(QR’S sf16 base (b) ISA Reference Manual 05.12.2013

RACO

address when an interrupt is started.

The table below summarizes the sf16 register properties. The paragraphs following the table provide
detailed information of register groups and individual registers.

RO-R7 | CC CS LC AL SF TA SA ID

can be source or destination of computation instr. yes no no no no no no no no

can be used as source of a move instruction yes yes | yes | yes | yes | yes | yes | yes | yes

can be used as destination of a move instruction yes yes | yes | yes | yes | yes | yes | yes no

can be used as indirect data address R6,R7 | no no no no | yes | yes no no

can be used as source/dest. of load/store yes no no no no yes | yes no no

can be used as indirect memory address index yes no no no no no no no no

can be part of an RGS (Register Selection) R2-R6 | no no no no | yes | yes no no

can be moved directly to the debug port yes no no no no no no no no

can be loaded directly from the debug port yes no no no no no no no no

RO-R7
CcC

Cc.C

CCc.O

CCz

CC.N

CS

CS.IVTP

CS.IR

CS.IE

Cs.Is

CS.AS

Eight 16-bit general purpose registers intended for computation operands

Condition Code; this 4-bit register contains the condition code flags C,0,Z and N.
CC is an implicit source operand of conditional branch instructions; CC is an implicit
destination operand of some selected computation instruction. The rules of how
these instructions update the flags in CC are part of the detailed descriptions of
these instructions; CC cannot be used as source or destination of memory
load/store instructions; a hidden shadow register exists to save CC when an
interrupt is started and to restore the original state of CC at the end of an interrupt
Carry flag; the C flag is set by add/subtract/compare arithmetic instructions that
update the CC register if a carry occurs from bit 15 to bit 16 and is cleared
otherwise. Most other instructions that update the CC register clear the carry flag. A
special case is the andb (logic and) instruction. It updates the CC.C bit with the
parity of the operation result. The flag is set in case of odd parity and is cleared in
case of even parity.

Overflow flag; the O flag is set by add/subtract/compare arithmetic instructions that
update the CC register if an arithmetic overflow occurs from bit 15 to bit 16 and is
cleared otherwise. For arithmetic overflow generation the source and destination
operands are treated as signed 2’s complement numbers. Most other instructions
that update the CC register clear the overflow flag. A special case is the andb (logic
and) instruction. It sets the CC.O bit if the result of the operation has odd parity and
if the CC.C bit is set from a preceding instruction.

Zero flag; the Z flag is set by instructions that update the CC register if the 16-bit
result of the operation is zero (all 16 bits zero) and is cleared otherwise.

Negative flag; the N flag is set by instructions that update the CC register if the 16-
bit result of the operation is negative (bit 15 set) and is cleared otherwise.

32-bit Control and Status; This 16-bit register contains a number of control and
status flags and also the pointer to the interrupt vector table in the data address
space; when CS is used as destination register of move instructions only the IVTP
field is updated with the corresponding bits of the destination operand the IR, IE, IS
and AS flags remain unchanged

Interrupt Vectors Table Pointer; this 11-bit field defines the most significant bits of
the 16-bit start address of the interrupt vector table in the data address space. The
table is aligned on a 32 bytes boundary. The five LSBs of the 16-bit table address
are all zeros and are not contained in the CS register. When the sf16 starts an
interrupt service routine it fetches the start address of the routine from the table
pointed to by IVTP

Interrupt status flag; this flag is set when the sf16 enters an interrupt service routine
and is cleared when the processor exits an interrupt service routine.

Interrupt Enable; this flag enables or disables interrupts; interrupt requests are
acknowledged only if IE is set.

Interrupt enable Save bit; this flag saves a copy of CS.IE when a scie (save and
clear interrupt enable) instruction is executed. Execution of an rsie (restore
interrupt enable) instruction copies CS.IS back to CS.IE. The IS bit together with the
scie andrsie instructions are used to temporarily disable interrupts and then
restore the original interrupt enable state.

Address Select; this flag determines if the physical SA register (AS=0) or the hidden

10

Property of RACORS GmbH Rev. 1.0

l@’ sf16 base (b) ISA Reference Manual 05.12.2013

RACORS

LC

AU

SP

TA

SA

ID.FML

ID.ISA

ID.IMA

ID.REV

interrupt return address register (AS=1) is accessed when a move to or from the SA
special register is executed; load/store instructions to/from the SA register number
always access the SA physical register; dedicated instructions are available to set
and clear the AS flag

16-bit loop counter; used as loop counter with the brlc (loop counter branch)
instruction to improve code density and performance of inner loops

16-bit address update; used with the (An)* addressing mode for load/store
instructions. With this addressing mode the AU register is added to the indirect
address register after the memory access

16-bit stack pointer; is part of the An register group and can be used as indirect data
address; the —(An) and (An)+ addressing modes which enable push/pop
operations and all other memory access addressing modes can be used with any of
the four registers of the An group so in principal each of the four An registers can be
used as stack pointer; the unique feature of SP is the adsp (add to stack pointer)
instruction; it adds a 7-bit signed constant to the address in SP and stores the result
in any of the four An registers; this can be used to allocate/de-allocate stack space
at the beginning and end of sub-routines (SP destination) or to move pointers to
data objects on the stack to one of the other An registers.

16-bit target address; used as instruction address for indirect jump and jump to
subroutine instructions; TA is also part of the An register group and can be used as
indirect data address; if used as indirect instruction address TA points to a 16-bit
opcode word in the 128kBytes instruction address space; if used as indirect data
address TA points to a byte location in the 64kBytes data address space.

16-bit subroutine return address; points to a 16-bit opcode word in the 128kBytes
instruction address space; when a jpsr (jump to subroutine) instruction is executed
the return address (address of the next instruction following the jpsr instruction) is
stored in SA; when an rtsr (return from subroutine) instruction is executed SA is
used as return address; SA can be accessed by mtsr and mfsr instructions only
when CS.AS is zero.

Core ID; this register provides a 16-bit identification code of the processor divided
into four separate 4-bit fields; ID is a read-only register; writing to ID has no effect
Family; this 4-bit code identifies the core family. The code for the sf16 is 5; this code
is to distinguish the processor from other architectures e.g. from processors of the
eco32, eco16 and sf32 families.

Instruction Set Architecture; this 4-bit code identifies the processor’s ISA; the
following ISA codes are defined for the sf16: 1 = base (b), 2 = dsp (d)
Implementation Architecture; this 4-bit code identifies the hardware implementation
architecture of the processor, the following codes are defined: 1 = light (l), 2 =
performance (p), 3 = superscalar (s), 4 = ultra-light (u); the IMA code 0 is used for
the ISS (Instruction Set Simulation) reference model of an ISA, which is not an
actual (hardware) implementation

Revision; this is the 4-bit revision code; the first revision is 1. A value of zero is
illegal; the revision number is relative to the core type, IMA and ISA; this means that
processors with different IMA, ISA or core type can have the same REV code

3.3.4 Hidden Registers

The sf16 base ISA has four additional hidden registers IRA, CCS, IAH and IAHS. The hidden registers are a
mandatory part of the programming model but are not contained in the Rn or SRn groups. For easy
distinction from the Rn and SRn registers hidden register names are printed in italic letters. The following
paragraphs are detailed descriptions of the hidden registers.

IRA

16-bit interrupt return address; points to a 16-bit opcode word in the 128kBytes
instruction address space; when an interrupt is started the return address (address
of the next instruction following the last instruction executed before the interrupt) is
stored in IRA; when an rtir ~ (return from interrupt) instruction is executed the
content of IRA is the effective instruction address where program execution
continues; IRA can be accessed by mtsr and mfsr instructions via the SA special
register number when CS.AS = 1; at least after reset IRA must be set once by an
mtsr instruction before the interrupt state is left by an rtir instruction to make sure
instruction execution continues at a deterministic address (IRA is undefined after
reset)

11

Property of RACORS GmbH Rev. 1.0

»

R’S sf16 base (b) ISA Reference Manual 05.12.2013

RACO

CCSs

IAH

IAHS

4-bit Condition Code Shadow register; this register is used to save the state of the
CC register when an interrupt is started; at the end of interrupt service routines
(execution of an rtir instruction) CC is restored from CCS

4-bit Instruction Address High; this register is used to extend the direct addressable
instruction address space from 12 bits (4k instructions) to 16 bits (64k instructions);
the siah instruction sets the IAH register to the 4-bit constant contained in the
opcode; the effective instruction address eia of jump and jpsr instructions with the
IA12 addressing mode is the concatenation of the IAH register as eia[15:12] and
the IA12 constant contained in the opcode as eia[11:0]; jump and jpsr

instructions with the IA12 addressing mode clear IAH to zero after the instruction
fetch; IAH is cleared to zero when the processor is reset; with no preceding siah
instruction jump and jpsr instructions with the IA12 addressing mode can only
reach the instruction address range from 0x0000-OxOFFF (IAH=0); IAH is saved in
IAHS and then cleared at the beginning of interrupts; the original value is restored
from IAHS at the end of interrupts

4-bit Instruction Address High Shadow register; this register is used to save the state
of the IAH register when an interrupt is started; at the end of interrupt service
routines (execution of an rtir instruction) IAH is restored from IAHS

12

Property of RACORS GmbH Rev. 1.0

RACO

lQR’S sf16 base (b) ISA Reference Manual 05.12.2013

4 Instruction set summery

4.1 Addressing modes

This section provides short descriptions of the base ISA addressing modes. The term “register” stands for a
general purpose register of the Rn group.

4.1.1 Data memory addressing modes

These addressing modes are used by load and store instructions to determine the eda of the memory source
(load) or destination (store) operand(s) and an optional update operation of an indirect address register.

DA8
(DO5s,AN)
(Rx,An)
(An)+
-(An)
(An)*

8-bit absolute, scaled data address

Indirect data address with 5-bit signed, scaled offset
Indirect data address with scaled index

Indirect data address with scaled post-increment
Indirect data address with scaled pre-decrement
Indirect data address with un-scaled post-update

4.1.2 Registers only addressing modes

Rs

Rd

Rs,Rd
RsO,Rs1
SRs,Rd
Rs,SRd
RsO,Rs1,Rd

Single register, Rs = source operand

Single register, Rd = destination operand

Dual registers, Rs = source operand, Rd = destination operand

Dual registers, RsO = source operand 0, Rs1 = source operand 1

Dual registers, SRs = source operand, Rd = destination operand

Dual registers, Rs = source operand, SRd = destination operand

Triadic registers, RsO = source operands 0, Rs1 = source operand 1, Rd =
destination operand

4.1.3 Registers and constants addressing modes

C74,CC
C7u,CS
C?UN,LC
C7sn,AU
C7s,Ad

C8,.Rb
C8un.Rb
C8,,Rs1
C9s,Rd
C16,Rb
SHC4,Rb

BTI4,Rb

Constant and single register, C7y = source operand, CC = destination operand
Constant and single register, C7 = source operand, CS = destination operand
Constant and single register, C7yy = source operand, LC = destination operand
Constant and single register, C7sy = source operand, AU = destination operand
Constant and single register, C7s = source operand 0, SP = source operand 1, Ad =
destination operand

Constant and single register, C8 = source operand 0, Rb = source operand 1 and
destination operand

Constant and single register, C8yy = source operand 0, Rb = source operand 1 and
destination operand

Constant and single register, C8, = source operand 0, Rs1 = source operand 1
Constant and single register, C9s = source operand, Rd = destination operand
Constant and single register, C16 = source operand 0, Rb = source operand 1 and
destination operand

Constant and single register, SHC4 = source operand 0, Rb = source operand 1 and
destination operand

Constant and single register, BT14 = source operand 0, Rb = source operand 1 and
destination operand

4.1.4 Instruction memory addressing modes

IA12
108¢
IAH4

12-bit absolute instruction address
8-bit signed instruction address offset
4-bit MSBs (bits[15:12]) of a 16-bit instruction address

4.1.5 Miscellaneous addressing modes

implied

operands are implicitly defined, there are two instruction categories: the first
category (interrupt enable, address select) uses flags of special register CS as
source and destination operands; for the second category (jump, jpsr) eia = TA.

13

Property of RACORS GmbH Rev. 1.0

RACO

lQR’S sf16 base (b) ISA Reference Manual

05.12.2013

4.2 Instructions

This section is a summary of the base ISA instructions divided into functional groups. For each group the
contained instructions are listed followed by a table with the available addressing modes. Instruction lists
have the instruction mnemonic (used in assembly language) on the left side followed by a brief, single line
description. In these descriptions the term “register” stands for a general purpose register of the Rn group.

In the addressing mode tables cells with available addressing modes are marked with an X and cells with
non-available combinations of instructions and addressing modes are grayed out. Groups containing
instructions that update the condition code flags have an additional row at the bottom of the table.
Instructions that update the condition flags in the condition code register CC are marked with a “*’ in this row.

421 Load, Store

Idbt load byte (8-bit word) from memory and zero-extend to 16 bits
Idsh load short (16-bit word) from memory
stbt store byte (8-bit) to memory
stsh store short (16-bit) to memory
ldbt |[ldsh |stbt | stsh
DAB| X X X X
(DO5g,An) | X X X X
(Rx,An) X X X X
(An)+ | X X X X
-(An) X X X X
(An)* | X X X X
4.2.2 Move
move move register to register or constant to register
mfsr move from special register (to general purpose register)
mtsr move to special register (from general purpose register)
mfdp move from debug port (to general purpose register)
mtdp move to debug port (from general purpose register)

move | nfsr mtsr
Rs,Rd X
C9,Rd X
SRs,Rd X
Rs,SRd X
C7,SRLd X
Rd X

Rs X

mfdp | mtdp

4.2.3 Arithmetic, excluding multiplies

addt
addc
adcf
addh
adsp
subf
subc
sbcf
comp
cmpc
cpcf
negt
absl
clzr

add register to register or constant to register

add with carry register to register or constant to register

add carry flag to register

add 16-bit constant to register

add to stack pointer

subtract register from register or constant from register

subtract with carry register from register or constant from register
subtract carry flag from register

compare register to register or constant to register

compare with carry register to register or constant to register
compare carry flag to register

negate (2's complement) from register to register

absolute value (2's complement if negative, move else) from register to register
count leading zeros from register to register

14

Property of RACORS GmbH

Rev. 1.0

(0’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS
sxbt sign extend byte
sxsh sign extend short
addt |addc |adcf |addh [adsp |subf |subc |sbcf |comp|cmpc |cpcf [negt [absl |clzr |sxbt |sxsh
Rs0,Rs1,Rd X X X X
C8uRb| X X
C16,Rb X
RsO,Rs1 X X
C8,,Rs1 X
Rs,Rd X X X X X X X
Rs X
C7snAd X
CC update * * * * * * * * *
4.2.4 Multiplies
mult multiply registers * register, 16*16 -> 32-hit, stores 16-bit low word result
mlhu multiply high unsigned, 16*16 -> 32-bit, stores 16-bit high word result
mlhs multiply high signed, 16*16 -> 32-bit, stores 16-bit high word result
mult | mlhu | mlhs
| RsO,Rs1,Rd X X X
4.2.5 Logic
andb and bit wise of two registers or of constant and register
iorb inclusive or bit wise of two registers or of constant and register
xorb exclusive or bit wise of two registers
invt invert (1's complement, invert) from register to register
andb | iorb | xorb | invt
Rs0,Rs1,Rd X X X
C8,Rs1,Rd X X
Rs,Rd X
CC update *
4.2.6 Shift
shlz shift left with zero fill, constant or indirect shift count from 0 to 15
shif shift left with feedback (rotate), constant or indirect shift count from 0 to 15
shru shift right unsigned, constant or indirect shift count from 0 to 15
shrs shift right signed, constant or indirect shift count from 0 to 5
shlz | shif shru | shrs
SHC4,Rb| X X X X
Rs0,Rs1,Rd X X X X
15 Property of RACORS GmbH Rev. 1.0

(0’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS
4.2.7 Bit manipulation
btst bit set, constant or indirect bit index from 0 to 15
btcl bit clear, constant or indirect bit index from 0 to 15
bttg bit toggle, constant or indirect bit index from 0 to 15
btts bit test, constant or indirect bit index from 0 to 15
btst btcl bttg btts
BIT4,Rs1,Rd X X X
BTl 4,Rs X
Rs0,Rs1,Rd X X X
Rs0O,Rs1 X
CC update *

4.2.8 Flow control

jump jump, continue program execution at specified target address

jpsr jump to subroutine
siah set instruction address high
rtsr return from subroutine
rtir return from interrupt
bric decrement loop counter and branch if non-zero
brxx branch conditional, 14 conditions, xx is a placeholder for the 2-character condition
stie set interrupt enable
clie clear interrupt enable
scie save and clear interrupt enable
rsie restore interrupt enable
stas set address select
clas clear address select
jump | jpsr siah | rtsr rtir brlc brxx | stie clie scie | rsie stas | clas
implied X X X X X X X X X X
1A12 X X
108 X X
IAH4 X

4.2.9 Miscellaneous

svpc save program counter to debug port
rspc restore program counter from debug port
stop stop, enter debug mode

Svpc | rspc | stop
[implied X X X

16 Property of RACORS GmbH Rev. 1.0

l@’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS

5 Reset, Interrupts & Debug-Support
5.1 Reset

5.1.1 Program start address

The processor input signal IRN[3:0] and the output signal IA[15:0] determine the program start address in
the instruction address space after a reset. The 4-bit interrupt number input signal IRN[3:0] is inserted as the
four most significant bits of the instruction address IA[15:0] of the first instruction fetch after a reset. All other
bits of IA[15:0] are zero. In summery the instruction address 1A[15:0] of the first instruction fetch after a reset
is IA[15:12] = IRN[3:0], IA[11:0] = O.

This concept enables start addresses other than zero. While the processor’s reset input is asserted external
logic drives the IRN[3:0] input to the value of the desired start address. In most systems the instruction RAM
starts at address zero. Driving IRN[3:0] to a non-zero value can be used to divert the program start after
reset e.g. to a boot ROM.

5.1.2 Processor state

After a reset the following registers and register fields of the programming model have a defined state:
CS.IR =1, the processor starts in an interrupt routine

CS.IE =0, interrupts are disabled

CS.IS =0, the interrupt enable save bit is clear

CS.AS =0, the address select bit is clear (SA access to the SA physical register)

CC =0, the condition code flags are all cleared

CCS =0, Condition Code Shadow (hidden register)

IAH = 0, Instruction Address High (hidden register)

All other registers and register fields of the programming model are not defined after a reset. Their states
and content after a reset is implementation specific. Software should not rely on any specific values.

5.2 Interrupts

5.2.1 Overview

The sf16 processors have 16 interrupts named 10, 11, 12 and 115. Interrupt requests are acknowledged only if
the IE bit in register CS is set. External logic generates interrupt requests by asserting the processors
interrupt request input signal IRQ and driving the number of the requested interrupt on the processor’s 4-bit
interrupt number input IRN[3:0]. The processor acknowledges an interrupt request by asserting the IACK
output.

Each of the 16 interrupts has an associated start address in the instruction address space. These start
addresses are software programmable and are contained in the interrupt vector table which is mapped into a
32 bytes window of the processor’s data address space. The 11-bit field IVTP of special register CS defines
the start address of the table. IVTP defines the higher 11 bits of the 16-bit table address. The five least
significant bits of the table address are zero. This implies that the interrupt vector table is aligned on a 32
bytes boundary. The table contains 16 entries of 16-bit size. Each entry is a 16-bit instruction address.
When an interrupt is started the instruction address of the next instruction following the last instruction
executed before the interrupt is stored in the hidden interrupt return address register IRA. The state of the
CC register is stored in the hidden condition code shadow register CCS. The hidden Instruction Address
High register IAH is stored in IAHS and then cleared. When an rtir ~ (return from interrupt) instruction is
executed the original values of CC and IAH are restored and program execution continues at the address in
IRA.

Writing to IRA can be done using mtsr Rs,SA instructions when CS.AS is set. It is required at least after a
processor reset to start program execution at a defined address when leaving the interrupt state with an

rtir instruction. Some OS code may require reading and writing the register to save, redirect and restore
interrupt return addresses in cases of task switches and system calls.

Beside CC, IAH and and the instruction address the sf16 does not save any registers of the programming
model automatically. User program code must save and restore any other registers that are modified by an
interrupt service routine.

17 Property of RACORS GmbH Rev. 1.0

l@’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS

5.2.2 Interrupt Flow

An interrupt request is generated when external logic asserts the processor’s input signal IRQ. The 4-bit
interrupt number input signal IRN[3:0] determines the number of the requested interrupt from 10 — 115. The
request is acknowledged immediately if the processor is not already executing another interrupt service
routine (CS.IR clear). If the processor is already executing an interrupt service routine (CS.IR set) the
request is acknowledged when the processor has returned from this routine and CS.IR has been cleared.
After the request has been acknowledged the processor reads the start address of the interrupt service
routine from the interrupt vector table in the data address space. Before executing the first instruction of the
service routine the address of the next instruction of the interrupted code sequence is saved in hidden
register IRA, CC and IAH are saved in their corresponding shadow registers and then IAH is cleared to zero.
While executing instructions of the interrupt service routine CS.IR is set. When an rtir ~ (return from
interrupt) instruction is executed at the end of the interrupt service routine CC and IAH are restored from
their corresponding shadow registers and execution of the interrupted code sequence continues at the
address in IRA.

Clearing of IAH at the beginning of interrupt routines is necessary to make sure the concept of 12-bit direct
instruction addresses using jump /jpsr instructions with the IA12 addressing mode directly and 16-bit
addresses using a preceding siah instruction is working correctly also in interrupt routines. The original
value of IAH is restored at the end of the interrupt to make sure an interrupted sequence of siah and

jump /jpsr instructions with the IA12 addressing mode is not corrupted.

5.3 Debug Support

5.3.1 Overview

The processors of the sf16 family have a scalable debug concept. To enable very low cost implementations
most of the debug resources are outside the processor core in a separate module. The functionality of this
module can be adapted to the requirements of each use case to avoid redundant resources. The processor
provides a 16-bit port to connect to the debug module.

To use any debug functions the processor has to be in the stopped state. This state is entered by either
driving the STRQ input signal to the asserted state or by executing a stop instruction. After all pending
instructions are retired the processor indicates it has reached the stopped state by asserting the STPD
output signal. While in the stopped state the debug port together with a set of dedicated instructions provide
the following low level functions:

« Transfer the content of a register Rn to the debug output port

« Transfer a 16-bit value from the debug input port to a register Rn

« Transfer the program counter value to the debug output port

e Transfer a 16-bit value from the debug input port to the program counter

« Injectindividual instructions via the debug input port and execute them

The debug module must provide the following mandatory and may provide the following optional functions:

e Mandatory: communication link to the debug host (PC), e.g. JTAG, UART, USB, Ethernet

* Mandatory: state machine to handle the control signals of the debug port

« Mandatory: a mechanism to transfer 16-bit data words from the processor’s debug output port to the
debug host and from the debug host to the processor’s debug input port

« Mandatory: assert and release the processor’s reset input

e Optional: instruction breakpoint register(s)

« Optional: data breakpoint and watch point register(s)

e Optional: access to the processor’s instruction memory

e Optional: access to the processor’s data memory

* Optional: trace buffer(s)

5.3.2 Debug Port
The debug port consists of the following signals:

DBI[15:0] Debug In, 16-bit data input
DBO[15:0] Debug Out, 16-bit data output
STRQ Stop Request, 1-bit control input
INJI Inject Instruction, 1-bit control input
STPD Stopped, 1-bit control output

18 Property of RACORS GmbH Rev. 1.0

l@’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS

5.3.3 Debug Instructions
The following dedicated instructions are part of the sf16 debug concept:

mtdp move to debug port, transfers the content of a registers Rn to the debug port data
output

mfdp move from debug port, transfers the 16-bit value driven on the debug port data input
to a register Rn

svpc save program counter, transfers the instruction address of the last instruction
executed before the stopped state was entered to the debug port data output

rspc restore program counter, transfers the 16-bit value driven on the debug port data

input to an internal instruction address register. When the processor leaves the
stopped state program execution continues from this address.

stop stop, the processor stops fetching new instructions and enters the stopped state
when all pending instructions are retired.

5.3.4 Debug Procedures

The following paragraphs describe how the most common debug procedures are implemented and how the
functionality is split between the debug module and the processor.

5.3.4.1 Instruction breakpoints

The instruction that should cause the break point is replaced by a stop instruction. Executing a stop
instruction causes the processor to enter the stopped mode. There are multiple options of how to replace an
instruction of a program by a stop instruction.

The simplest option requires that the processor can access the instruction memory via the data bus
(instruction memory mapped into the data address space). In this case the debug module can inject an
instruction sequence into the processor that writes a stop instruction at the desired location of the
instruction memory.

In systems where the processor cannot access the instruction memory via the data bus two options exist to
generate instruction break points. The first option requires that the debug module has direct access to the
processor’s instruction memory. In this case the debug module writes stop instructions directly into the
desired locations of the instruction memory. The second option requires one or more instruction address
registers in the debug module and the debug module must be connected to the processor’s instruction
memory controller. The debug module monitors the processor’s instruction bus and compares instruction
fetch addresses to the values in the address registers. In case of a match the instruction word read from the
instruction memory is replaced on the fly by a stop instruction opcode. This option also works for read only
instruction memories.

Once an instruction break point has been hit the debug module has to wait until the processor asserts the
STPD output signal. Then the debug host can access the processor’s registers and data memory by injecting
instruction sequences via the debug module. To continue normal processor operation the debug module has
to assert and then de-assert the STRQ signal while the STPD output is asserted.

5.3.4.2 Data breakpoints and watch points

Data break points and watch points require a set of registers in the debug module and a connection of the
debug module to the processor’s data bus. Typical entries have a least a data address register. With optional
data value and address/data mask registers a break/watch point becomes more flexible and can also trigger
on a data value or address range.

The debug module monitors the processor’s data bus and compares data address and data in/out values to
the registers of the break/watch point entries. In case of a match a watch point only signals the event to the
debug host. In case of a break point hit the debug module brings the processor in the stopped mode by
asserting the processor’'s STRQ input.

5.3.4.3 Show register content

When the processor is in the stopped mode the debug module injects mtdp instructions to read the content
of general purpose registers. To read a special register first an mfsr instruction is injected to copy the
special register to a general purpose register. An mtdp instruction then transfers the general purpose
register content to the debug module.

5.3.4.4 Modify register content

When the processor is in the stopped mode the debug module injects mfdp instructions to change the
content of general purpose registers. To modify a special register the value is first written to a general
purpose register by injecting an mfdp instruction. The value is then transferred to the special register by
injecting an mtsr instruction.

19 Property of RACORS GmbH Rev. 1.0

l@’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS

5.3.4.5 Show memory content

For memories that the processor can access through the data bus the desired data word is first read into a
general purpose register by injecting a load instruction. Then the general purpose register is read by injecting
an mtdp instruction.

To read from memories that are not mapped into the processor’s data address space the debug module
requires a direct connection to these memories.

5.3.4.6 Modify memory content

For memories that the processor can access through the data bus the desired data word is first written into a
general purpose register by injecting an mfdp instruction. Then the general purpose register is written into
memory by injecting a store instruction.

To write to memories that are not mapped into the processor’s data address space the debug module
requires a direct connection to these memories.

5.3.4.7 Download and start a program

Data and program code is written into the processor’s data and instruction memories using the previously
described procedures. To start a program at a certain address in the instruction address space the debug
module injects an rspc instruction and drives the desired address on the debug input port. The debug
module then de-asserts the STRQ signal. The processor leaves the stopped state and starts program
execution from the injected address.

5.3.4.8 Saving and restoring the program counter
When the processor has been brought into the stopped state to access registers and/or memories by

injecting individual instructions via the debug module it is not necessary to save and restore the program
counter. The rspc instruction is used to start programs from a defined location as described previously.

Combinations of svpc and rspc instructions are used to execute debug utility routines as part of a system’s
debug concept. Injecting longer instruction sequences while the processor is stopped, e.g. to copy memory
areas can be slow because of the instruction injection process. For each injected instruction the processor’s
pipeline is flushed and the next instruction can be injected only when the processor has reasserted the
STPD output. A more efficient method is to store some debug utility routines in a reserved area of the
processor’s instruction memory space.

To execute a debug utility routine for the debugging of an application program the processor is first brought
into the stopped state. Then the program counter is saved by injecting a svpc instruction. The value is the
address where the application program has been stopped. It is stored for later use in the debug host or in a
register of the debug module. The start address of the debug utility routine is set by injecting an rspc
instruction and driving the start address on the processor’s debug input port. The debug module then
releases the STRQinput signal the processor leaves the stopped state and executes the debug utility
routine. The last instruction of the debug utility routine is a stop instruction which brings the processor back
into the stopped state. To continue the application program at the same location it has been stopped an
rspc instruction is injected and the previously saved instruction address is driven on the processor’s debug
port input. Then the STRQ input is released and the processor continues executing the application program.

20 Property of RACORS GmbH Rev. 1.0

l@’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS

6 Operand Types
6.1 Legend

This chapter defines the bit accurate generation and calculation of individual operands of instructions. For
constant and register data operands the generation of the operand value will be defined. For memory
operands and instruction words the generation or calculation of the effective memory address will be defined.

The number and types of the operands of each instruction (also called addressing modes) are not defined
here. They are defined in the addressing mode table of each instruction in the instruction details chapters.

The following paragraphs define the formats and notations used in operand type definitions and effective
address calculations.

6.1.1 Mnemonic

This is the acronym of the operand type used to specify operands in the addressing mode tables of detailed
instruction descriptions.

Mnemonics of constants with a value range have a one or two-character suffix with the following meaning:
First character: U (Unsigned), S (Signed) or A (Asymmetric)

Second Character: N (Not Including Zero)

6.1.2 Text Description

Text description of how the operand is generated or calculated. Also lists the instructions for which the
operand type is used. Text descriptions reference the variables used in the C language description

6.1.3 C language description
Pseudo C language statements are used as bit true reference of how the operand is generated or calculated.
The statements use the following data types and notations:
uint4 type: 4-bit unsigned integer
uintlé type: 16-bit unsigned integer
boolean type: 1-bit Boolean variable, can take the values true and false or 1 and 0.
sizeof(memory operand) , this operator yields the size of a memory operand in bytes and takes
values of 1 for byte (8-bit) operands, 2 for short (16-bit) operands and 2*n for short RGS
(register selection) operands where n is the number of registers in RGS

6.1.4 Opcode

This table defines where the bits of the operand are located in 16-bit opcode words. For each bit that is part
of the operand the bit position within the operand type’s bit array is specified. Bits that are not part of the
operand are empty boxes in white color.

Some operand types have multiple coding options. The opcode tables have separate rows for each coding
option.

6.2 Constant operand types

Constant operands are bit fields in instruction opcodes. Constant operands are transformed into source
operands of instructions.

C7U 7-bit constant (Unsigned)

The 7-bit field C7y is extracted from the opcode word and zero-extended to the 16-bit source operand src .
The value range is [0,127].
Used with instruction mtsr (with CC or CS destination)
C language description
uint16 src;
src=C7

| opcode bits [15[14[13[12[11]10] 9
C7, 5/4]3[2]1]0]6

o}
~
o
(&
N
w
N
[N
o

21 Property of RACORS GmbH Rev. 1.0

(Q’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS
C7UN 7-bit constant (Unsigned, Not including zero)

The 7-bit field C7yyis extracted from the opcode word and zero-extended to 16-bits. If the field value is zero
the source operand src is set to 128. If not the zero-extended field value becomes the source operand src .
The value range is [1,128].
Used with instruction: mtsr (with LC destination)
C language description

uintl6 src;

src=C7 y==07?128:C7 UN

[opcode bits [15[14[13[12[11]10] 9[8[7|6][5]4[3]2]1]0
C7un 5/4|3|2|1|0]|6
C7SN 7-bit constant (Signed, Not including zero)

The 7-bit field C7syis extracted from the opcode word and sign-extended to 16-bits. If the field value is zero
the source operand src is set to 64. If not the sign-extended field value becomes the source operand src .
The value range is [-64,1] and [1,64].
Used with instructions: mtsr (with AU destination)
C language description

uint16 src;

src=C7 4 y==07?64: (C7 un& 0x40 ? FF80 | C7 un. C7 U|\b,

[opcode bits [15[14[13[12[11]10] 9[8[7[6][5]4[3]2]1]0
C7sn 5(4|3[2]1]0]6
C8U 8-bit constant (Unsigned)

The 8-bit field C8y is extracted from the opcode word and zero-extended to the 16-bit source operand src .
The value range is [0,255].
Used with instructions: andb, iorb

C language description

uintl6 src;
src=C8
[opcode bits [15[14[13[12[11]10] 9[8[7]|6][5]4[3]2]1]0
C8y 71/6|/5[4(3|2|1]|0
C8UN 8-bit constant (Unsigned, Not including zero)

The 8-bit field C8yyis extracted from the opcode word and zero-extended to the 16-bit source operand src .
If the field value is zero the source operand src is set to 256. The value range is [1,256].
Used with instructions: addt, subf
C language description
uintl6 src;
src=C8 yn==07?256:C8 UN

[opcode bits [15[14[13[12][11]10] 9[8[7[6][5]4[3]2]1]0
8w |7]6]5]4]3]2]1]0

22 Property of RACORS GmbH Rev. 1.0

(Q’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS
C8A 8-bit constant (Asymmetric)

If the LSB of the opcode word is set the 8-bit field C8y is extracted from the opcode word and zero-extended
to the 16-bit source operand src . If the LSB of the opcode word is clear the 8-bit bit field C8y is extracted
from the opcode word and the lower 6 bits are converted to the negative 16-bit source operand src . The
value range is [-64,255].
Used with instruction: comp
C language description

uintl6 src;

src = opcode & 1 ? C8 a - OxFFcO | (C8 A & Ox3F);

[opcode bits [15]14[13[12]11]10]9[8[7]6[5[4][3]2]1]0
C8x 7]/6[5]4]3]2]1]0

Cgs 9-bit constant (Signed)
The 9-bit field C9s is extracted from the opcode word and sign-extended to the 16-bit source operand src .
The value range is [-256,255].
Used with instruction: move
C language description
uint16 src;
src=C9 & 0x100 ? OXFEOO | C9 s:C9 g

[opcode bits [15[14[13[12[11]10] 9[8[7[6][5]4[3]2]1]0
C9g 716(5(4(3|2|1]|0 8
C16 16-bit constant

The 8-bit field C16 is extracted from the opcode word and becomes the 16-bit source operand src . The
value range is [0x0000,0xFF0Q]. Bits [7:0] of the constant are always zero and are not coded.
Used with instruction: addh
C language description
uintl6 src;
src = C16;

©
o)
~
o
Ul
IN
w
N
[
o

| opcode bits [15[14[13][12[11]10
C16 15[14[13]12[11]10] 9| 8

SHC4 4-bit shift count

The 4-bit field SHC4is extracted from the opcode word and becomes the source operand src . The value
range is [0,15].

Used with instructions: shlz, shlf, shru, shrs

C language description

uint4 src;
src = SHC4;
[opcode bits [15]14[13]12][11]10] 98 [7[6]5]4[3]2]1]0
SH4 3210
BTI4 4-bit bit index

The 4-bit field BTI4 is extracted from the opcode word and becomes the source operand src . The value
range is [0,15]. The bit index is counted from the LSB (BTI4 = 0) to the MSB (BTI4 = 15). The bit index
operand is used to address individual bits of registers Rn.
Used with instructions: btst, btcl, bttg, btts
C language description

uint4 src;

src = BTl4,

[opcode bits [15[14[13[12[11]10] 9[8[7]|6][5]4[3]2]1]0
BTI4 3|12]1]0

23 Property of RACORS GmbH Rev. 1.0

(Q’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS

6.3 Register operand types

Register operands are contained in one of the eight general purpose registers Rn or in one of the eight
special registers SRn. They can be either source or destination operands. Bit fields in the instruction opcode
determine which register of the Rn, SRn or An group is used. Reserved register bits and bit-fields read as
Zeros.

RS Rn register used as source

The content of register Rs is the 16-bit source operand src . The Rs operand type is used with instructions
that have a single source operand.
C language description

uintl6 src;
src = Rs;
[opcode bits [15][14[13[12]11][10[9[8[7[6[5[4[3]2]1]0
Rs 2(1|0
RSO Rn register used as source 0

The content of register RsO is the 16-bit source operand srcO . The RsO operand type is used with
instructions that have two source operands. If used with non-commutative instructions like subtract or
compare RsO is on the right side of the operator src1 — Rs0). If used with shift, bit manipulation or bit-field
instructions RsO is the parameter source operand and contains the indirect shift-count or bit-index.

C language description

uint16 srco;
src0 = RsO;
| opcode bits [15]14[13[12[11]10] 9[8[7|6][5]4[3]2]1]0
RsO 211|0
RSl Rn register used as source 1

The content of register Rs1 is the 16-bit source operand srcl . The Rsl operand type is used with
instructions that have two source operands. If used with non-commutative instructions like subtract or
compare Rs1 is on the left side of the operator (Rs1 — src0). If used with shift, bit manipulation or bit-field
instructions Rsl is the data source operand.

C language description

uintl6 srcl;
srcl = Rsl;
[opcode bits [15]14[13]12][11]10] 9[8[7[6]5]4[3]2]1]0
Rsl 2(1|0
Rd Rn register used as destination

The 16-bit destination operand dst is stored in register Rd.
C language description

uint16 dst;

Rd = dst;

[opcode hits [15]14[13[12][11]10] 9[8[7]6
Rd 2|10

(&1
I
w
[N)
[
o

24 Property of RACORS GmbH Rev. 1.0

(Q’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS
Rb Rn register used as both source 1 and destination

The content of register Rb is the 16-bit source operand srcl . The Rb operand type is used with instructions
that have two source operands. If used with non-commutative instructions like subtract Rb is on the left side
of the operator (Rb — srcO). After the operation the 16-bit destination operand dst is stored in register Rb.
C language description

uint16 srcl,dst;

srcl = Rb;
Rb = dst;
[opcode bits [15]14[13]12][11]10] 9] 8[7[6]5]4[3]2]1]0
Rb 2|10
SRS SRn register used as source

The content of register SRs is the 16-bit source operand src . Reserved register bits and bit fields read as
zeros. Used with instruction: mfsr

C language description

uintl6 src;
src = SRs;
[opcode bits [15[14[13[12[11]10] 9[8[7|6][5]4[3]2]1]0
SRs 2/1|0
SRd SRn register used as destination

The 16-bit destination operand dst is stored in register SRd. The read-only special register ID cannot be
used as destination register. Used with instruction: mtsr

C language description

uint16 dst;
SRd = dst;
[opcode bits [15]14[13]12][11]10] 9[8[7[6]5]4[3]2]1]0
SRd 211|0
SRLd low order special register SRLn used as destination

The 16-bit destination operand dst is stored in register SRLd. The group of low order special registers
SRLn includes registers CC, CS, LC and AU. Used with instruction: mtsr

C language description

uint16 dst;
SRLd = dst;
[opcode bits [15[14[13[12[11]10] 9[8[7|6][5]4[3]2]1]0
SRLd 1(0
Ad address register An used as destination

The 16-bit destination operand dst is stored in register Ad. Used with instruction: adsp
C language description

uint16 dst;

Ad = dst;

[opcode bits [15]14[13]12]11][10[9[8[7[6[5[4[3]2]1]0
Ad 1[0

25 Property of RACORS GmbH Rev. 1.0

»

’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS
RGS Register Selection

RGS is a selection of registers of the Rn and SRn groups. Up to seven registers can be selected by seven
flags in the opcode word. Registers RO, R1, R2, R3, R4, R5, R6, TA and SA can be contained in a register
selection RGS. RO and R1 can only be in an RGS of load/store byte instructions. TA and SA can only be in
an RGS of load/store short instructions. The register selection RGS is either the source operand src[n-
1:0] of a memory store instruction with addressing mode -(An) or the destination operand dst[n-1:0] of
a memory load instruction with addressing mode (An)+ . The RGS source or destination operand is an array
of n 8-bit or 16-bit values where n is the number of registers selected by RGS. In memory the n values are
located at adjacent byte or 16-bit word address locations. Registers are stored to memory and loaded from
memory in a fixed order which is reversed between the -(An) and (An)+ addressing modes. Refer to the —
(An) and (An)+ memory addressing modes in the next section of this chapter for details.
Used with instructions Idbt, Idsh, stbt, stsh
C language description
uintl16 src16[n], dst16[n];
uint8 src8[n], dst8[n];
if(instruction == stsh)
src16[n-1:0] = RGS;
if(instruction == Idsh)
RGS = dst16[n-1:0];
if(instruction == stbt)
src8[n-1:0] = RGS;
if(instruction == Idbt)
RGS = dst8[n-1:0];

The coding of RGS is different for the (An)+ and -(An) addressing modes. The opcode table below has
separate entries for (An)+ and -(An) . Register flags are identified by single characters with the following
notation:

e characters 0-6 identify RO — R6

e character T identifies TA

e character S identifies SA

| opcode bits 15(14|13|12|11|10/9|8|7|6|5]|4|3|2|1]|0
Idbt (An)+ ,RGS 65|43 2/1|0
stbt RGS, - (An) o[1]2]3 4[5]6
ldsh (An)+,RGS 65|43 2[T|[s
stsh RGS, - (An) S|T|2|3 4|56

26 Property of RACORS GmbH Rev. 1.0

(Q’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS

6.4 Memory operand addressing

Memory operands are 8-bit, 16-bit or n* 16-bit memory words used as source operand of load instructions or
as destination operand of store instructions. Addressing modes for memory operands determine the 16-bit
effective data address eda of the operand. Some of the indirect memory addressing modes that use an
address register An to calculate eda update the address register An as a side effect. For addressing modes
where the memory operand size determines the value of an address register An increment or decrement or
a scale factor the increment values or scale factors are specified in the addressing mode table of the
instruction description.

For addressing modes with an indirect address register An the opcode contains a 2-bit field that selects one
of registers SP, TA, R6 or R7 as indirect address.

DA8 8-bit direct data address

For byte (8-bit) memory operands the effective address eda is the 8-bit constant DA8 extracted from the
opcode and zero-extended to 16 bits. Legal values for eda are from 0x0000 — OxOOFF. For short (16-bit)
memory operands the effective address eda is the 8-bit constant DA8 extracted from the opcode, left-shifted
by one bit and zero-extended to 16 bits. Legal values for eda are from 0x0000 — OxO1FE (even values only).
Used with instructions Idbt, Idsh, stbt, stsh

C language description
uint16 src,dst;

void *eda;
if(instruction == (Idbt|stbt))
eda = DAS;
if(instruction == (Idsh|stsh))
eda = DA8 << 1,
if(instruction == (Idbt|ldsh))
dst = *eda;
if(instruction == (stbt|stsh))
*eda = src;
| opcode bits [15[14[13[12[11]10] 9[8[7]|6][5]4[3]2]1]0
DA8 413(2|1|0(7|6|5
(DOSS,An) Address register indirect with 5-bit signed offset

The 5-bit constant DO5s (Signed) is extracted from the opcode and sign-extended to the 16 bit offset ofs .
The ofs value range is [-16,15]. For byte (8-bit) memory operands the effective address eda is ofs added to
the value of the address register An. For short (16-bit) memory operands the effective address eda is ofs
left-shifted by one bit and added to the value of the address register An.

Used with instructions Idbt, Idsh, stbt, stsh
C language description
uint16 src,dst,ofs;
void *eda;
ofs = DO5 ¢ & 0x10 ? OXxFFEO | DO5 s:DO5 g
if(instruction == (Idbt|stbt))
eda = An + ofs;
if(instruction == (Idsh|stsh))
eda = An + (ofs << 1);
if(instruction == (Idbt|ldsh))
dst = *eda;
if(instruction == (stbt|stsh))
*eda = src;

| opcode bits [15[14[13[12[11]10] 9[8[7]|6][5]4[3]2]1]0
DGC5¢ 413|2]|1|0
An 110

27 Property of RACORS GmbH Rev. 1.0

(Q’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS
(RX,An) Address register indirect with index

The effective address eda of the data memory operand is the index register Rx multiplied by the operand
size and added to the value of the address register An.

Used with instructions Idbt, Idsh, stbt, stsh
C language description
uintl6é src,dst;
void *eda;
eda = An + sizeof(memory operand) * Rx;
if(instruction == (Idbt|ldsh))

dst = *eda;
if(instruction == (stbt|stsh))
*eda = src;
[opcode bits [15]14[13[12][11]10]9[8[7][6][5]4[3]2]1]0
Rx 211|0
An 1|0
(An)+ Address register indirect with post-increment

This addressing mode is available for both Rd destination operands and for RGS (register selection)
destination operands (Idbt and Idsh instructions only). The effective address eda of the data memory
operand is the value of the address register An. After the memory access(es) the address register An is
incremented by the size (in bytes) of the operand. Registers of the RGS selection are read from memory in
the following fixed order (reversed order of —(An) addressing mode): RO/SA, R1/TA, R2, R3, R4, R5, R6
Used with instructions Idbt, stbt, stsh, Idsh
C language description

uint16 dst,rgs[n]; /I n = number of registers in RGS

void *eda;

inti;

eda = An;

if((dst==rgs) & (instruction==(ldbt|ldsh)))

for(i=0;i < n;i++){

rgs[i] = *eda;
eda += sizeof(rgs[i]);
}
else{
dst = *eda,;
eda += sizeof(dst);
}
An = eda;
[opcode bits [15[14[13[12[11]10] 9[8[7|6][5]4[3]2]1]0
An 1/0

28 Property of RACORS GmbH Rev. 1.0

(Q’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS
-(An) Address register indirect with pre-decrement

This addressing mode is available for both Rs source operands and for RGS (register selection) source
operands (stbt and stsh instructions only). Before each memory access the address register An is
decremented by the size (in bytes) of the individual operand. The effective address eda of the data memory
operand is the value of the address register An after the decrement. Registers of the RGS selection are
written to memory in the following fixed order (reversed order of (An)+ addressing mode): R6, R5, R4, R3,
R2, R1/TA, RO/SA
Used with instructions Idbt, Idsh, stbt, stsh
C language description

uintl6 src, rgs[n]; // n = number of registers in RGS

void *eda;

inti;

eda = An;

if((src==rgs) & (instruction==(stbt,stsh)))

for(i=0;i < n;i++){
eda -= sizeof(rgs[i]);

*eda = rgsJi];
}
else{
eda -= sizeof(dst);
*eda = src;
}
An = eda;
[opcode bits [15]14[13[12]11][10[9[8[7[6[5]4[3]2]1]0
An 1|0
A * . o .
(n) Address register indirect with post-update

The effective address eda of the data memory operand is the value of the address register An. After the
memory access special register AU is added to the address register An.

Used with instructions Idbt, Idsh, stbt, stsh
C language description

uint16 dst;
void *eda;
eda = An;
dst = *eda;
An += AU;
[opcode bits [15]14[13]12][11]10] 9] 8[7[6]5]4[3]2]1]0
An 1/0

29 Property of RACORS GmbH Rev. 1.0

(Q’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS

6.5 Instruction addressing

Instruction addresses point to 16-bit opcode words in the instruction memory. With the exception of some
flow instructions the effective instruction address eia of the next instruction is the address of the current
instruction plus one.
C language description

uintl6 *eia;

eia[next instruction] = eia[current instruction] + 1;
Some of the flow instructions calculate a new effective instruction address eia and instruction execution

continues non-sequentially at the new location in the instruction memory. The following paragraphs define
how these flow instructions generate the new effective instruction address eia.

|A1 2 12-bit absolute instruction address

The 12-hit field I1A12 is extracted from the opcode word. The 16-bit effective instruction address eia is the
concatenation of the 4-bit hidden register IAH and the 12-bit constant IA12. IAH becomes eia[15:12] and
IA12 becomes eia[11:0]. The IA12 value range is [0,0xXOFFF]. After the instruction fetch IAH is set to zero.

Used with instructions jump, jpsr
C language description

uintl6 *eia;
eia=(|AH<<12)|IA12;
| AH=0;
| opcode bits [15[14[13[12[11]10] 9[8[7[6][5]4[3]2]1]0
IA12 11|110/9|8|7|6|5]4[3|2|1]|0
Note

The concept of the IA12 addressing mode together with the 4-bit hidden register IAH and the siah
instruction enables the full 16-bit instruction address space to be reached with direct addresses. The first 4k
instructions from 0x0000-OxOFFF can be reached with a single jump/jpsr instruction and the 1A12
addressing mode. Instruction addresses > OxOFFF can be reached with a two-instructions sequence. The
first instruction is a siah instruction and sets the 4-bit hidden register IAH to bits[15:12] of the target eia.
The second instruction is a jump/jpsr with the IA12 addressing mode. For this concept to work it is
necessary that the IA12 addressing mode clears the I1AH register to zero after the instruction fetch.

|O8 S 8-bit instruction offset (Signed)
The 8-bit field 108 is extracted from the opcode word. The new effective instruction address eia is the sign
extended constant added to the address of the current instruction cia .
Used with instructions brlc, brxx
C language description
uintl6 *eia,*cia;
eia = cia + (108 s & 0x80 ? OxFF0O | 108 s:108);

[opcode bits [15[14[13[12[11]10] 9[8[7]|6][5]4[3]2]1]0
1085 7/6]/5[4]|3]|2|1]|0

IAH4 4-bit instruction address high

The 4-bit field IAH4 is extracted from the opcode word and stored in the 4-bit hidden register IAH.
Used with instruction siah
C language description

uintl6 *eia,*cia;

| AH = 1AH4;

o)
~
o
Ul
IN
w
N
[
o

| opcode bits [15[14[13[12[11]10] 9
| AH4 3[2]1]0

30 Property of RACORS GmbH Rev. 1.0

l@’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS

7 Load, store and move instructions

7.1 Common properties

The load, store and move instructions transfer the source operand to the destination operand without
modifying the value of the operand. Except the load/store instructions with RGS source or destination
operands all load, store and move instructions have a single source operand and a single destination
operand. Move instructions have a constant or register source and a register destination. Load instructions
have a memory source and a register destination. Store instructions have a register source and a memory
destination. None of the load, store and move instructions update the condition code flags in register CC.

7.2 Legend

The next section lists the load, store and move instructions in alphabetical order and defines the bit accurate
operations they perform. The following paragraphs define the formats and notations used in individual
instruction definitions.

7.2.1 Mnemonic
A four-character acronym of the instruction used to specify instructions in assembly language.

7.2.2 Text Description

Text description of the operations performed. Text descriptions reference the operand variables that are
defined and used in the C language description

7.2.3 C language description
These C language statements are the bit true reference of the operations performed by an instruction. The
following types and variables are used in the statements:

uintlé type: 16-bit unsigned integer

uint8 type: 8-bit unsigned integer

boolean type: 1-bit Boolean variable, can take the values true and false or 1 and 0.

The use of unsigned integers does not necessarily mean that the underlying operands are unsigned. It
means that the computations defined by the C statements are done assuming unsigned operands.

7.2.4 Addressing modes table

These tables list all addressing modes of an instruction. For each addressing mode the assembly language
format is specified and the assignment of operands used in the C statements to operand specifiers in the
assembly format is given.

For the (An)+ and —(An) addressing modes with RGSsource or destination operand the eda (effective
data address) column uses variable i to reference the i 4, element of the RGSregister selection. Variable i
is running from 0 to n-1 where n is the number of registers contained in RGS

7.2.5 Notes

Notes are optional and provide hints of how the instruction is used or if other instructions can do similar
operations more efficiently.

31 Property of RACORS GmbH Rev. 1.0

"

R’S sf16 base (b) ISA Reference Manual

05.12.2013
RACO

7.3 Instruction detalils

|dbt load byte

Loads the byte (8-bit word) from the effective data address eda in the data memory, zero-extends the value
to 16 bits and stores it in the 16-bit destination dst . Some addressing modes update the indirect address
register An as indicated in the addressing modes table. With the (An)+,RGS addressing mode the update
parameter n is the number of registers contained in RGS and can take values from 1 to 7.
C language description

uint16 dst;

uint8 *eda;

dst = *eda;
The C language statements for the calculation of the effective data address eda and for the An update
operations are specified in the addressing modes table for each addressing mode.

Addressing Modes assembly format eda An update dst
direct 8-bit data address ldbt DA8,Rd DA8 not appl. Rd
indirect data address with 5-bit offset ldbt (DO5s,An),Rd An+D(5¢ | no update Rd
indirect data address with index Id bt (R x,An),Rd An+Rx | no update Rd
indirect data address with post-increment |ldbt (An) +,Rd An += 1 Rd
indirect data address with pre-decrement |ldbt - (An) ,Rd An-1 -= 1 Rd
indirect data address with post-update Idot (An) *Rd An += AU Rd
indirect data address with post-increment |ldbt (An) +RGS An+i +=n RG¢

ldsh load short

Loads the short operand (16-bit word) from the effective data address eda in the data memory and stores it
in the 16-bit destination dst . Some addressing modes update the indirect address register An as indicated
in the addressing modes table. With the (An)+,RGS addressing mode the update parameter n is the
number of registers contained in RGS and can take values from 1 to 7.
C language description

uintl6 dst,*eda;

dst = *eda;

The C language statements for the calculation of the effective data address eda and for the An update
operations are specified in the addressing modes table for each addressing mode.

Addressing Modes assembly format eda An update dst
direct 8-bit data address ldsh DA8,Rd DA8 not appl. Rd
indirect data address with 5-bit offset ldsh (DO5s,An),Rd An+D(55 | no update Rd
indirect data address with index Id sh (R x,An),Rd An+2* Rx | no update Rd
indirect data address with post-increment [ldsh (An) +,Rd An +=2 Rd
indirect data address with pre-decrement |ldsh - (An) ,Rd An- 2 -=2 Rd
indirect data address with post-update Idsh (An) *,Rd An += AU Rd
indirect data address with post-increment |ldsh (An) +RGS An+2*i +=2*n RG¢

mfdp move from debug port

The 16-bit word driven on the debug input port dbgi of the processor is stored in the 16-bit destination dst .
C language description
uint16 dbgi,dst;

dst = dbgi;
Addressing Modes assembly format src dst
single register mfdp Rd dbgi Rd
32 Property of RACORS GmbH Rev. 1.0

(Q’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS
mfsr move from special register

The 16-bit source src is stored in the 16-bit destination dst . Reserved bits of special register sources read
as zeros.
C language description

uintl6 src,dst;

dst = src;
Addressing Modes assembly format src | dst
dual registers mfsr SRs, Rd SRs | Rd
move move

The source operand src is stored in the 16-bit destination operand dst .

C language description
uintl6 src,dst;

dst = src;

Addressing Modes assembly format src | dst
dual registers move Rs,Rd Rs | Rd
constant and single register |move C9g,Rd C9s | Rd

mtdp move to debug port

The 16-bit source operand src is transferred to the debug output port dbgo .

C language description
uint16 dbgo,src;

dbgo = src;
Addressing Modes |assembly format src | dst
single register mtdp R's Rs |dbgo
mtSI’ move to special register

The 16-bit source src is stored in the 16-bit destination dst . With the 7-bit constant source operand option
only the four low order special registers SRLd can be used as destination and the format of the 7-bit
constant depends on the destination register. The addressing modes table therefor has separate entries for
the 7-bit constant addressing modes and each possible destination register.
C language description

uintl6é src,dst;

dst = src;

Addressing Modes assembly format src | dst
dual registers mtsr Rs,SRd Rs | SRc
constant and single register |mtsr C7 ,CC C7y | CC
constant and single register |mtsr C7 ,CS C7y | CS
constant and single register |mtsr C7 ,LC Ciw| LC
constant and single register |mtsr C7 g, AU Cisn| AL

33 Property of RACORS GmbH Rev. 1.0

RACO

stbt

Extracts the least significant byte (8-bit word) from the 16-bit source operand src and stores it at the

(QR’S sf16 base (b) ISA Reference Manual

05.12.2013

store byte

effective data address eda in data memory. Some addressing modes update the indirect address register An

as indicated in the addressing modes table. With the RGS-(An)
is the number of registers contained in RGS and can take values from 1 to 7.

C language description

uintl6 src;
uint8 *eda;
*eda = src;

The C language statements for the calculation of the effective data address eda and the An update
operations are specified in the addressing modes table for each addressing mode.

stsh

Stores the 16-bit source operand(s) src at the effective data address eda in the data memory. Some

addressing mode the update parameter n

Addressing Modes assembly format eda An update src
direct 8-bit data address stbt Rs, DA8 DA not appl. Rs
indirect data address with 5-bit offset stbt Rs, (DO5g,AnN) An+DC5¢ | no update Rs
indirect data address with index stbt Rs,(Rx,An) An+Rx | no update Rs
indirect data address with post-increment |Stbt Rs, (An) + An +=1 Rs
indirect data address with pre-decrement |Stbt Rs, - (An) An-1 -= Rs
indirect data address with post-update stbt Rs, (An) * An += AU Rs
indirect data address with pre-decrement |stbt RGS,- (An) An-i-1 -= RGS

store short

addressing modes update the indirect address register An as indicated in the addressing modes table. With

the RGS-(An)

can take values from 1 to 7.
C language description
uintl6 src,*eda;

*eda = src;

The C language statements for the calculation of the effective data address eda and the An update
operations are specified in the addressing modes table for each addressing mode.

addressing mode the update parameter n is the number of registers contained in RGS and

Addressing Modes assembly format eda An update src
direct 8-bit data address stsh Rs, DA8 DA not appl. Rs
indirect data address with 5-bit offset stsh Rs, (DO5s,An) An+DC5s | no update Rs
indirect data address with index stsh Rs,(Rx,An) An+2* Rx | no update Rs
indirect data address with post-increment [Stsh Rs, (An) + An += 2 Rs
indirect data address with pre-decrement |Stsh Rs, - (An) An- 2 -= 2 Rs
indirect data address with post-update stsh Rs, (An) * An += AU Rs
indirect data address with pre-decrement |Stsh RGS,- (An) An- 2% -2 -=2'n RGS

34 Property of RACORS GmbH Rev. 1.0

l@’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS

8 Computation instructions

8.1 Common properties

Computation instructions perform mathematical operations on the data values of software programs. One or
more source operands are transformed to a destination operand by an arithmetic, logic, shift, bit
manipulation, or multiply operation.

8.2 Legend

The next sections define the bit accurate operations of the sf16 computation instructions grouped into
categories and in alphabetical order for each category. The following paragraphs define the formats and
notations used in individual instruction definitions.

8.2.1 Mnemonic
A four-character acronym of the instruction used to specify instructions in assembly language.

8.2.2 Text Description

Text description of the operations performed. Text descriptions reference the operand variables that are
defined and used in the C language description

8.2.3 C language description
These C language statements are the bit true reference of the operations performed by an instruction. The
following types and variables are used in the statements:

uintl6 type: 16-bit unsigned integer

sintl6 type: 16-bit signed integer

uint4 type: 4-bit unsigned integer

boolean type: 1-bit Boolean variable, can take the values true and false or 1 and 0.

In addition to these variables the condition code flags in special register CC are used directly as destination
operands. If the C language description of an instruction contains no statements that assign new values to
the condition code flags then the instruction does not update the CC register.

Individual bits of non-array variables are referenced by the variable name followed by the bit number in
square brackets. E.g. bit 3 of source operand 0 is referenced by srcO[3]

The use of unsigned integers does not necessary mean that the underlying operands are unsigned. It means
that the computations defined by the C statements are done assuming unsigned operands.

8.2.4 Addressing modes table

These tables list all addressing modes of the instruction. For each addressing mode the assembly language
format is specified and the assignment of operands used in the C statements to operand specifiers in the
assembly format is given.

8.2.5 Notes

Notes are optional and provide hints of how the instruction is used or if other instructions can do similar
operations more efficiently.

35 Property of RACORS GmbH Rev. 1.0

l@’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS

8.3 Arithmetic Instructions

absl absolute value

The absolute value of the 16-bit source operand src is stored in the 16-bit destination operand dst .
C language description

uintl6 src,dst;

dst = src & 0x8000 ? —src : src;

Addressing Modes |assembly format src | dst
dual registers absl Rs,Rd Rs | Rd
adcf add carry flag

Adds the carry flag CC.C to the 16-bit source operand src and stores the result in the 16-bit destination
operand dst . The flags in CC are updated. The zero flag CC.Z is set only if dst is zero and if CC.Z was set
before the operation. If one of these two conditions is not met CC.Z is cleared.
C language description

uintl6 src,dst;

dst = src + CC.C;

CC.C = (src1[15]&srcO[15]) | (srcl[15]&~dst[15]) | (srcO[15]&~dst[15]);

CC.O = (srcl[15]&srcO[15]&~dst[15]) | (~srcl[15]&~s rcO[15]&dst[15]);

CCZ=CC.Z&(dst==0)?1:0;

CC.N = dst[15];

Addressing Modes |assembly format src | dst
dual registers adcf Rs,Rd Rs | Rd
addc add with carry

Adds the 16-bit source operands srcO , srcl and the carry flag CC.C. The result is stored in the 16-bit
destination operand dst and the flags in CC are updated. The zero flag CC.Z is set only if dst is zero and if
CC.Z was set before the operation. If one of these two conditions is not met CC.Z is cleared.
C language description

uint16 src0,srcl,dst;

dst = srcl + srcO + CC.C;

CC.C = (src1[15]&src0[15]) | (src1[15]&~dst[15]) | (srcO[15]&~dst[15]);

CC.O = (srcl[15]&srcO[15]&~dst[15]) | (~src1[15]&~s rcO[15]&dst[15]);

CCZ=CC.Z&(dst==0)?1:0;

CC.N = dst[15];

Addressing Modes |assembly format srcO | srcl | dst

triadic registers addc RsO,Rs1,Rd RsO | Rsl | Rd

36 Property of RACORS GmbH Rev. 1.0

[
QRS sf16 base (b) ISA Reference Manual 05.12.2013

RACO

addt add to

Adds the two 16-bit source operands srcO and srcl , stores the result in the 16-bit destination operand dst
and updates the flags in CC.
C language description
uint16 src0,srcl,dst;
dst = srcl + src0;
CC.C = (src1[15]&src0[15]) | (src1[15]&~dst[15]) | (srcO[15]&~dst[15]);
CC.O = (srcl[15]&srcO[15]&~dst[15]) | (~src1[15]&~s rcO[15]&dst[15]);
CC.Z=dst==07?1:0;
CC.N = dst[15];

Addressing Modes assembly format srcO | srcl | dst
triadic registers addt RsO,Rs1,Rd RsO | Rsl | Rd
constant and single register |addt C 8.y,Rb C8,n | Rb Rb

addh add high

The 16-bit constant C16 is added to the 16-bit source operand srcl . The result is stored in the 16-bit
destination operand dst . Bits [7:0] of constant C16 are always zero.
C language description

uint16 srcl,dst;

dst = C16 + srcl;

Addressing Mode assembly format srcO | srcl | dst

constant and single register |addh C 16, Rb C16 Rb Rb

Notes

Main purpose of the addh instruction is the generation of 16-bit constants in general purpose registers Rn.
This is done by a move C9,Rd instruction followed by a addh instruction with the dst of the move used as
both src1 and dst operands. Bits[7:0] of the C9s of the move instruction are the lower 8 bits and the C16 of
the addh instruction are the higher 8 bits of the 16-bit constant.

adSp add to stack pointer

The 7-bit constant C7gy is sign-extended to 16 bits and added to the value of special register SP. The result
is stored in the 16-bit destination dst which is one of the four address registers An. C7gy is not including
zero. If the field value is zero 64 is added to the value of SP.
C language description

uintl6 con,dst;

con=C7 n==07?764:(C7 sn& 0x40 ? OxFF80 | C7 sn: C7 SN

dst = SP + con;

Addressing Mode assembly format srcO | srcl | dst

constant and single register |adsp C7SN, Ad C7sn | SF | Ad

Notes
The adsp instruction is used to allocate and de-allocate stack space in function prologues and epilogues (SP
destination). It is also used to load an address register with a pointer to a stack location.

37 Property of RACORS GmbH Rev. 1.0

(Q’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS
clzr count leading zeros

Counts the number of zero bits in the 16-bit source operand src starting with the MSB until the first ‘1’ bit is
found. The count is stored in the 16-bit destination operand dst . If no ‘1’ bit is found (src == 0) the count
stored in the destination operand dst is 16.
C language description

uintl6é src,dst;

uint4 bti;

dst = 16;

for(bti=15;bti >= O;bti--)

if(src[bti] == 1){

dst = 15 — bti;
break;
}
Addressing Modes |assembly format src | dst
dual registers clzr Rs,Rd Rs | Rd
cmpc compare with carry

Subtracts the 16-bit source operand srcO and the carry flag CC.C from the 16-bit source operand src1 and
updates the flags in CC according to the result. The zero flag CC.Z is set only if dst is zero and if CC.Z was
set before the operation. If one of these two conditions is not met CC.Z is cleared.

C language description
uint16 src0,srcl,tmp;
tmp = srcl - srcO — CC.C;
CC.C = (~src1[15]&src0[15]) | (~srcl[15]&tmp[15]) | (srcO[15]&tmp[15]);
CC.O = (srcl[15]&~src0[15]&~tmp[15]) | (~srcl[15]&s rcO[15]&tmp[15]);
CC.Z=CC.Z&(tmp==0)?1:0;
CC.N = tmp[15];

Addressing Modes assembly format srcO | srcl
dual registers cmpc RsO,Rsl RsO | Rsl
com p compare

Subtracts the 16-bit source operand srcO from the 16-bit source operand srcl and updates the flags in CC
according to the result.

C language description
uint16 src0,srcl,tmp;
tmp = srcl - srcO;
CC.C = (~src1[15]&src0[15]) | (~src1[15]&tmp[15]) | (srcO[15]&tmp[15]);
CC.O = (src1[15]&~src0[15]&~tmp[15]) | (~src1[15]&s rcO[15]&tmp[15]);
CCZ=tmp==0?1:0;
CC.N = tmp[15];

Addressing Modes assembly format srcO | srcl
dual registers comp RsO,Rs1 RsO Rs1
constant and single register |comp C8,,Rsl C8s | Rsl

38 Property of RACORS GmbH Rev. 1.0

(Q’ sf16 base (b) ISA Reference Manual
RACORS

05.12.2013

cpcf
Subtracts the carry flag CC.C from the 16-bit source operand src and updates the flags in CC according to

the result. The zero flag CC.Z is set only if dst is zero and if CC.Z was set before the operation. If one of
these two conditions is not met CC.Z is cleared.

C language description
uint16 src,tmp;
tmp = src — CC.C;
CC.C = ~src[15] & tmp[15];
CC.O = srcl[15] & ~tmp[15];
CC.Z=CC.Z& (tmp==0)?1:0;
CC.N = tmp[15];

compare carry flag

Addressing Modes assembly format src

dual registers cpcf Rs Rs
negt negate
The 2's complement of the 16-bit source operand src is stored in the 16-bit destination operand dst .
C language description
uint16 src,dst;
dst = —src;
Addressing Modes |assembly format src | dst
dual registers negt Rs,Rd Rs | Rd

shcf

Subtracts the carry flag CC.C from the 16-bit source operand src stores the result in the 16-bit destination
operand dst and updates the flags in CC. The zero flag CC.Z is set only if dst is zero and if CC.Z was set
before the operation. If one of these two conditions is not met CC.Z is cleared.
C language description

uintl6é src,dst;

dst = src - CC.C;

CC.C = ~src[15] & dst[15];

CC.O = src[15] & ~dst[15];

CC.Z=CC.Z&(dst==0)?1:0;

CC.N = dst[15];

subtract carry flag

Addressing Modes |assembly format src | dst

sbcf Rs Rs Rd

dual registers

subc

Subtracts the 16-bit source operand srcO and the carry flag CC.C from the 16-bit source operand srcl .
The result is stored in the 16-bit destination operand dst and the flags in CC are updated. The zero flag
CC.Zis setonly if dst is zero and if CC.Z was set before the operation. If one of these two conditions is not
met CC.Z is cleared.
C language description
uint16 src0,srcl,dst;
dst = srcl - srcO - CC.C;
CC.C = (~src1[15]&src0[15]) | (~src1[15]&dst[15]) |
CC.O = (srcl[15]&~src0[15]&~dst[15]) | (~src1[15]&s
CC.Z=CC.Z&(dst==0)?1:0;
CC.N = dst[15];

subtract with carry

(srcO[15]&dst[15]);
rcO[15]&dst[15]);

Addressing Modes |assembly format srcO | srcl | dst
triadic registers subc RsO,Rs1,Rd RsO | Rsl | Rd
39 Property of RACORS GmbH Rev. 1.0

(Q’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS
subf subtract from

Subtracts the 16-bit source operand srcO from the 16-bit source operand srcl , stores the result in the 16-
bit destination operand dst and updates the flags in CC.
C language description
uint32 src0,srcl,dst;
dst = srcl - src0;
CC.C = (~src1[31]&src0[31]) | (~src1[31]&dst[31]) | (srcO[31]&dst[31]);
CC.O = (srcl[31]&~src0[31]&~dst[31]) | (~srcl[31]&s rcO[31]&dst[31]);
CC.Z=dst==071:0;
CC.N = dst[31];

Addressing Modes assembly format srcO | srcl | dst
triadic registers subf RsO,Rs1,Rd RsO | Rsl | Rd
constant and single register [SubfC 8y,Rb C8u | Rb | Ro

sxbt sign extend byte

Extends the sign of the low-byte of the 16-bit source operand src to the high byte and store the result in the
16-bit destination operand dst .
C language description

uintl6 src,dst;

dst = src & 0x80 ? OXFFOO | src : src & OxFF;

Addressing Modes |assembly format src | dst

dual registers sxbt Rs,Rd Rs | Rd

Notes

Main purpose of the sxbt instruction is to convert signed byte operands loaded from memory into a general
purpose register Rn to a 16-bit 2's complement format for subsequent computations.

sxsh sign extend short

Extends the sign of the 16-bit source operand src to the 16-bit destination operand dst .
C language description

uintl6 src,dst;

dst = src & 0x8000 ? OxFFFF : O;

Addressing Modes |assembly format src | dst
dual registers sxsh Rs,Rd Rs | Rd

Notes

Main purpose of the sxsh instruction is to convert signed short operands loaded from memory into a general
purpose register Rn to a multi-precision (> 16-bits, e.g. 32-bit) 2’s complement format stored in multiple
general purpose registers for subsequent multi-precision computations.

40 Property of RACORS GmbH Rev. 1.0

(Q’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS

8.4 Logic Instructions

andb logic AND bit wise

Performs a bit wise logic AND operation between the two 16-bit source operands srcO and srcl , stores the
result in the 16-bit destination operand dst and updates the flags in CC. The order of C statements is

important regarding the update of CC.O. CC.O uses the old value of CC.C as source operand before CC.C
is updated by the andb instruction.

C language description
uint16 src0,srcl,dst;
boolean par;
uint4 bti;
dst = srcl & src0;
par = 0;
for(bti=0;bti < 16;bti++)

par "= dst[bti];
CC.O =par ™ CC.C;
CC.C = par;
CC.Z=dst==07?1:0;
CC.N = dst[15];

Addressing Modes assembly format srcO | srcl | dst
triadic registers andb Rs0O,Rs1,Rd RsO | Rsl | Rd
constant and single register |andb C 8,Rb C8, | Rb | Rb

Notes

The andb instruction is the only logic instruction that updates CC. This is because ‘and’ operations are
frequently used to test bits or bit fields against zero.

A special feature of the sf16 andb instruction is the parity generation in CC.C and CC.O. It is useful for CRC
calculations and other security and data integrity related algorithms. CC.C contains the parity of the
destination operand of the current andb instruction. CC.O is used for the parity of longer bit strings > 16 bits.
For the parity of long bit strings first CC.C and CC.O are cleared by e.g. a mtsr 0,CC instruction. Then a
sequence of andb instructions is executed, as many as are necessary to cover the entire long string. After
the last andb instruction CC.O is the parity of the entire long string.

ith invert

Inverts the 16-bit source operand src and stores the result in the 16-bit destination operand dst.
C language description
uintl6 src,dst;

dst = ~src;
Addressing Modes |assembly format src | dst
dual registers invt Rs,Rd Rs | Rd
iorb inclusive OR bit wise

Performs a bit wise inclusive or between the two 16-bit source operands srcO and srcl and stores the
result in the 16-bit destination operand dst .
C language description

uint16 src0,srcl,dst;

dst = srcl | srcO;

Addressing Modes assembly format srcO | srcl | dst
triadic registers iorb Rs0,Rs1,Rd RsO | Rsl | Rd
constant and single register [iorb C 8y,Rb C8y Rb Rb

41 Property of RACORS GmbH Rev. 1.0

(Q’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS
xorb exclusive OR

Performs a bit wise exclusive or between the two 16-bit source operands srcO and srcl and stores the
result in the 16-bit destination operand dst .
C language description

uintl16 src0,srcl,dst;

dst = srcl ~ src0;

Addressing Modes assembly format srcO | srcl | dst
triadic registers xorb RsO,Rs1,Rd RsO | Rsl | Rd
8.5 Shift Instructions
shlf shift left with feedback

Performs a left shift with feedback (rotate) operation of the 16-bit source operand src and stores the result
in the 16-bit destination dst . The shift count shc4 can take values from 0 to 15. The shift with feedback
operation is a left shift that shifts in the bits shifted out at the MSB of the operand back in at the LSB of the
operand. In addressing modes with indirect shift count shc4 is equal to bits [3:0] of source register RsO. Bits
[15:4] of RsO are ignored.
C language description

uintl6 src,dst;

uint4 shc4;

dst = (src << shc4) | (src >> (16 — shc4));

Addressing Modes assembly format shc4 | src | dst
triadic registers shlf Rs0,Rs1,Rd RsO | Rsl | Rd
constant and single register |shlif SHC 4,Rb SHM | Rb | Rb

shlz shift left with zero fil

Performs a left shift with zero fill of the 16-bit source operand src and stores the result in the 16-bit
destination dst . The shift count shc4 can take values from 0 to 15. In addressing modes with indirect shift
count shc4 is equal to bits [3:0] of source register Rs0. Bits [15:4] of RsO are ignored.
C language description

uint16 src,dst;

uint4 shc4;

dst = src << shc4;

Addressing Modes assembly format shc4 | src | dst
triadic registers shlz RsO,Rs1,Rd RsO | Rsl | Rd
constant and single register [shlz SHC 4,Rb SHM4 | Rb | Rb

Sh I'S shift right signed

Performs a signed right shift of the 16-bit source operand src and stores the result in the 16-bit destination
dst . The shift count shc4 can take values from 0 to 15. Signed shift means that the sign of the source
operand src[15] s preserved and the destination operand dst has the same sign as the source operand
src . In addressing modes with indirect shift count shc4 is equal to bits [3:0] of source register Rs0. Bits
[15:4] of RsO are ignored.
C language description

uint16 src,dst;

uint4 shc4;
dst = src >> shc4;
if(src[15])
dst |= OXFFFF << (16 — shc4);
Addressing Modes assembly format shc4 | src | dst
triadic registers shrs RsO,Rs1,Rd RsO | Rsl | Rd
constant and single register [shrs SHC 4,Rb SHM@ | Rb | Rb

42 Property of RACORS GmbH Rev. 1.0

(Q’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS
shru shift right unsigned

Performs a right shift of the 16-bit source operand src and stores the result in the 16-bit destination dst .
The shift count shc4 can take values from 0 to 15. In addressing modes with indirect shift count shc4 is
equal to bits [3:0] of source register Rs0. Bits [15:4] of RsO are ignored.
C language description
uint16 src,dst;
uint4 shc4;
dst = src >> shc4;

Addressing Modes assembly format shc4 | src | dst
triadic registers shru Rs0,Rs1,Rd RsO | Rsl | Rd
constant and single register [shru SHC 4,Rb SHM4 | Rb | Rb

8.6 Bit manipulation instructions

btcl bit clear

Clears the bit of the 16-bit source operand src indexed by bti4 and stores the result in the 16-bit
destination dst . The bit index bti4 can take values from 0 to 15. In addressing modes with indirect bit index
bti4d is equal to bits [3:0] of the source register RsO. Bits [15:4] of RsO are ignored.
C language description

uint16 src,dst;

uint4 bti4;

dst = src & ~(1 << bti4);

Addressing Modes assembly format bti4 src | dst
triadic registers btcl RsO,Rs1,Rd RsO | Rsl | Rd
constant and single register |btcl BT 14,Rb BTI4 | Ro | Rb

tht bit set

Sets the bit of the 16-bit source operand src indexed by bti4 and stores the result in the 16-bit destination
dst . The bit index bti4 can take values from 0 to 15. In addressing modes with indirect bit index bti4 is
equal to bits [3:0] of the source register Rs0. Bits [15:4] of RsO are ignored.
C language description

uintl6 src,dst;

uint4 bti4;

dst = src | (1 << bti4);

Addressing Modes assembly format bti4 src | dst
triadic registers btst RsO,Rs1,Rd RsO | Rsl | Rd
constant and single register |btstBTI 4,Rb BTI4 | Rb | Rb

bttg bit toggle

Toggles the bit of the 16-bit source operand src indexed by bti4 and stores the result in the 16-bit
destination dst . The bit index bti4 can take values from 0 to 15. In addressing modes with indirect bit index
btid is equal to bits [3:0] of the source register RsO0. Bits [15:4] of RsO are ignored.
C language description

uintl6 src,dst;

uint4 bti4;

dst = src * (1 << bti4);

Addressing Modes assembly format bti4 src | dst
triadic registers bttg RsO,Rs1,Rd RsO | Rsl | Rd
constant and single register |bttg BTl 4,Rb BTI4 | Rb | Rb

43 Property of RACORS GmbH Rev. 1.0

(Q’ sf16 base (b) ISA Reference Manual
RACORS

05.12.2013

btts bit test

Tests the bit of the 16-bit source operand src indexed by bti4 and updates the condition codes in CC
according to the result. The bit index bti4 can take values from 0 to 15. In addressing modes with indirect
bit index bti4 is equal to bits [3:0] of source register Rs0. Bits [15:4] of Rs0O are ignored.
C language description

uintl6 src,tmp;

uint4 bti4;

tmp = src & (1 << bti4);

CC.C=0;

CC.0=0;

CCZ=tmp==0?1:0;

CC.N = tmp[15];

Addressing Modes assembly format bti 4 | src
triadic registers btts RsO,Rs1 RsO | Rsl
constant and single register |btts BTl 4,Rs BTlI4 | Rs

8.7 Multiply Instructions
mlhs multiply high signed

Performs a signed multiply of the two 16-bit source operands srcO and srcl . The 31-bit product is right
shifted (sign preserved) by 16 bits, sign-extended to 16 bits and stored in the 16-bit destination dst .
C language description

uint16 dst;

sint16 scr0,scri;

dst = (srcl * src0) >> 16;

Addressing Modes |assembly format srcO | srcl | dst

triadic registers mlhs Rs0,Rs1,Rd RsO | Rsl | Rd

mlhu

Performs an unsigned multiply of the two 16-bit source operands srcO and srcl . The 32-bit product is right
shifted by 16 bits and stored in the 16-bit destination dst .
C language description

uint16 src0,srcl,dst;

dst = (srcl * src0) >> 16;

multiply high unsigned

Addressing Modes |assembly format srcO | srcl | dst

triadic registers mlhu RsO,Rs1,Rd RsO | Rsl | Rd

mU|t multiply

Performs a multiply of the two 16-bit source operands srcO and srcl and stores the lower 16 bits of the 32-
bit product in the 16-bit destination operand dst .
C language description

uintl16 src0,srcl,dst;

dst = srcl * srcO;

Addressing Modes |assembly format srcO | srcl | dst
triadic registers mult RsO,Rs1,Rd RsO Rs1 Rd
44 Property of RACORS GmbH Rev. 1.0

[
QRS sf16 base (b) ISA Reference Manual 05.12.2013

RACO

9 Flow control instructions

9.1 Common properties

The instructions of this category control the program flow. They don’t perform data operations and do not
update general purpose registers.

9.2 Legend

The next section lists the flow control instructions in alphabetical order and defines the bit accurate
operations they perform. The following paragraphs define the formats and notations used in individual
instruction definitions.

9.2.1 Mnemonic
A four-character acronym of the instruction used to specify instructions in assembly language.

9.2.2 Text Description

Text description of the operations performed. Text descriptions reference the operand variables that are
defined and used in the C language description

9.2.3 C language description

These C language statements are the bit true reference of the operations performed by an instruction. The
following types and variables are used in the statements:

uintlé type: 16-bit unsigned integer
Boolean type: 1-bit Boolean variable, can take the values t r ue and f al se or 1 and 0.

Individual bits of variables are referenced by the variable name followed by the bit number in square
brackets. E.g. bit 11 of source operand 0 is referenced by src0[11]

The use of unsigned integers does not necessary mean that the underlying operands are unsigned. It means
that the computations defined by the C statements are done assuming unsigned operands.

9.2.4 Addressing modes table

This table lists all addressing modes of the instruction. For each addressing mode the assembly language
format is specified.

9.2.5 Notes

Notes are optional and provide hints of how the instruction is used or if other instructions can do similar
operations more efficiently.

45 Property of RACORS GmbH Rev. 1.0

[
QRS sf16 base (b) ISA Reference Manual 05.12.2013

RACO

9.3 Instruction details

brIC decrement loop counter and branch if non zero

Decrements special register LC (loop counter). If LC is unequal zero after the decrement program execution
continues at the effective instruction address eia calculated from the current instruction address cia and
constant I08s. The 8-bit instruction address offset 108s is sign-extended to 16 bits and added to cia . If LC is
zero after the decrement program execution continues with the next instruction in sequence.
C language description

uint6 tmp,*cia,*eia;

LC-=1;
if(LC = 0){

tmp =108 & 0x80 ? OXFFOO | 108 5. 108 g

eia = cia + tmp;
}
else

eia = cia + 1;

Addressing Modes assembly format
8-bit instruction address offset |bric 10 8g
brXX branch if condition ‘xx’ is true

This is a group of 14 conditional branch instructions. Individual instructions have different mnemonics (see
addressing modes table), xx is a placeholder for the two characters that express the condition.
If the condition cnd is true program execution continues at the effective instruction address eia calculated
from the current instruction address cia and constant I08s. The 8-bit instruction address offset 1085 is sign-
extended to 16 bits and added to cia . If the condition cnd is false instruction execution continues with the
next instruction in sequence.
C language description
uintl6 tmp,*cia,*eia;
boolean cnd;
if(cnd == true){
tmp=108 & 0x80 ? OxFFOO | 108 s: 108 g
eia = cia + tmp;
}
else
eia = cia + 1;
Addressing modes
All of the 14 conditional branch instructions have the same addressing mode: “ 8-bit instruction address
offset”. In the table below the addressing mode column is omitted. Instead the table includes a column that
specifies the conditions cnd as C language statements. The following variables are used in the statements:
boolean C,0,Z,N;

C=CC.;
O =CC.0;
Z=CC.z
N = CC.N;

Instruction Condition assembly format
branch if no carry CND = ~C; br nc 10 8s
branch if carry CND =C; brcr 108¢
branch if no overflow CND = ~0; brno 1084
branch if overflow CND = O; br of 1084
branch if non zero CND = ~Z, brnz 1085
branch if zero CND = Z; brzr 1084
branch if positive CND = ~N; br ps 108¢
branch if negative CND = N; brng 108«
Branch if lower or same |[CND=C| Z; bris 1084

46 Property of RACORS GmbH Rev. 1.0

(QR’S sf16 base (b) ISA Reference Manual

05.12.2013
RACO
branch if higher CND =~C & ~Z; br hi 1084
branch if lower CND =(N & ~0O) | (~N & O); brio 108¢
branch if greater of equal |[CND = (N & O) | (~N & ~O); brge 108¢
branch if lower or equal [CND=Z| (N &~O) | (=N & O); brle 108¢
branch if greater CND=~Z & ((N&O) | (N & ~0O)); brgt 108g

clas

clear address select

Selects physical register SA for access by mtsr /mfsr instructions with the SA special register number by
clearing the AS bit in register CS.
C language description

CS.AS =0;

Notes

Addressing Modes

assembly format

implied

cl as

Load/store instructions with the SA special register as destination or source register always access the SA
physical register and never the IRA hidden register.

clie

clear interrupt enable

Disables interrupts by clearing the interrupt enable bit IE in register CS.
C language description

CS.IE=0;

jump

Addressing Modes

assembly format

implied

clie

jump

Program execution continues at the effective instruction address eia generated from hidden register IAH
concatenated with a constant in the opcode or from special register TA. In case of the IA12 addressing
mode hidden register IAH is cleared after the instruction fetch from eia .
C language description

uintl6 *eia;

if(addressing-mode == 1A12)

| AH=0;

The C language statements for the calculation of eia are specified in the addressing modes table for each
addressing mode.

Addressing Modes assembly format eia
implied jump eia= TA;
12-bit absolute instruction address |jump IA 12 eia= (1AH <<12)| IA 12

JPSr
The address of the next instruction in sequence following the jpsr instruction is saved in special register
SA. This is the current instruction address cia plus 1. Program execution continues at the effective
instruction address eia generated from hidden register IAH concatenated with a constant in the opcode or
from special register TA. In case of the IA12 addressing mode hidden register IAH is cleared after the
instruction fetch from eia .
C language description

uintl6 *cia,*eia;

SA=cia+1;

if(addressing-mode == 1A12)

| AH=0;

jump to subroutine

a7 Property of RACORS GmbH Rev. 1.0

RACO

[
QRS sf16 base (b) ISA Reference Manual 05.12.2013

The C language statements for the calculation of eia are specified in the addressing modes table for each
addressing mode.

Addressing Modes assembly format eia
implied jpsr eia=TA;
12-bit absolute instruction address |jpsr 1A 12 eia=([|AH <<12)| IA 12

Notes

sf16 processors do not automatically save and restore the return addresses of sub-routines on a stack. For
nested sub-routines software must save and restore special register SA using store and load instructions. In
the lowest nesting level where no further sub-routines are called saving and restoring of SA is not necessary.

rsie restore interrupt enable

Copies the interrupt enable save bit IS in CS to the IE bit in CS.

C language description
CS.IE=CS.IS;

Addressing Modes |assembly format

implied rsie

Notes

The rsie instruction is used to restore the original interrupt enable state after it has been saved with a scie
instruction.

r'spc restore program counter

The current instruction address cia is set to the 16-bit value driven on the debug input port dbgi .
C language description

uint16 dbgi,*cia;

cia = dbgi;

Addressing Modes |assembly format

implied rspc

Notes

The svpc instruction is used by software debugging systems to save the current instruction address when
the processor is in the stopped state. The debugger can then execute debugger utility routines in normal
operation mode. To continue execution of the program under debug an rspc instruction is injected while the
processor is in the stopped state to restore the original instruction address.

rtir return from interrupt

The condition codes CC and the hidden instruction address high IAH register are restored from hidden
registers CCS and IAHS respectively where they had been saved when the interrupt was started. The
interrupt flag in CS.IR is cleared. Program execution continues at the address in hidden register IRA as
effective instruction address eia . If the processor is currently not executing an interrupt the behavior of an
rtir instruction is not defined.

C language description
uintl6 *cia,*eia;

if(CS.IRX{
eia = | RA;
CC = CCs;
IAH= | AHS;
CS.IR=0;

}

Addressing Modes |assembly format

implied rtir

48 Property of RACORS GmbH Rev. 1.0

l@’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS
rtsr return from subroutine

Program execution continues at the address in special register SA as effective instruction address eia .
C language description

uintl6 *eia;
eia = SA;
Addressing Modes |assembly format
implied rtsr
Notes

sf16 processors do not automatically save and restore the return addresses of sub-routines on a stack. For
nested sub-routines software must save and restore register SA using store and load instructions. In the
lowest nesting level where no further sub-routines are called saving and restoring of SA is not necessary.

SCle save and clear interrupt enable

Copies the interrupt enable bit IE in CS to the IS bit in CS and then clears IE. Disables interrupts.
C language description

CS.IS=CS.IE;
CS.[E=0;
Addressing Modes |assembly for ~ mat
implied scie
Notes

The scie instruction is used to temporarily disable interrupts and then restore the original interrupt enable
state with an rsie instruction. This is required e.g. for atomic read/modify/write operations on semaphore
variables.

siah set instruction address high

The 4-bit hidden register IAH is set with the constant IAH4 contained in the opcode.
C language description
| AH = 1AH4;

Addressing Modes assembly format

4-bit instruction address high |siah IAH4

Notes

The siah instruction is used to extend the direct addressable instruction address space from 12 bits (4k
instructions) to 16 bits (64k instructions). With the IA12 addressing mode alone only the lower 4k
instructions from 0x0000-OxOFFF can be reached. For jump /jpsr instructions with eia > OXOFFF first
hidden register IAH is set to eia [15:12] by a siah instruction. The following jump /jpsr instruction then
contains eia [11:0] and clears IAH to zero after the jump.

Although the typical use is a two-instruction sequence of siah and a jump /jpsr with IA12 addressing
mode it is not mandatory that a siah instruction is immediately followed by a jump /jpsr 1A12 instruction.
IAH will keep the value set by a siah up to the next jump /jpsr 1A12 instruction no matter how many
instructions are in between. In case an interrupt occurs between a siah instruction and the next jump /jpsr
IA12 instruction IAH is saved in IAHS and then cleared and is restored from IAHS at the end of the interrupt

StaS set address select
Selects hidden register IRA for access by mtsr /mfsr instructions with the SA special register number by
setting the AS bit in register CS.

C language description
CS.AS =1,

Addressing Modes |assembly format

implied stas

Notes

Load/store instructions with the SA special register as destination or source register always access the SA
physical register and never the IRA hidden register.

49 Property of RACORS GmbH Rev. 1.0

(Q’ sf16 base (b) ISA Reference Manual 05.12.2013
RACORS
stie set interrupt enable

Enables interrupts by setting the interrupt enable bit IE in register CS.
C language description
CS.E=1;

Addressing Modes |assembly format

implied stie

stop stop

Instruction fetching stops and the processor waits until execution of previously fetched instructions is
finished. Then the debug state is entered. To resume program execution external debug hardware must
signal the end of the debug state.
C language description

Not applicable

Addressing Modes |assembly format

implied stop

Notes

The stop instruction is used by software debugging systems to set instruction break points. Debugger
software replaces instructions at desired break point positions with stop instructions. Debugger controlled
single stepping through programs is also done using stop instructions.

SVpC save program counter

The current instruction address cia is transferred to the debug output port dbgo .
C language description

uintl6 dbgo,*cia;

dbgo = cia;

Addressing Modes |assembly format

implied svpc

Notes

The svpc instruction is used by software debugging systems to save the current instruction address when
the processor is in the stopped state. The debugger can then execute debugger utility routines in normal
operation mode. To continue execution of the program under debug an rspc instruction is injected while the
processor is in the stopped state to restore the original instruction address.

50 Property of RACORS GmbH Rev. 1.0

RACO

(QR’S sf16 base (b) ISA Reference Manual

05.12.2013

Instruction Coding

The following table contains the opcodes of all sf16 base ISA instructions. The instructions are listed in
alphabetical order. For instructions with multiple addressing modes all addressing modes are listed
sequentially in the table. Following the opcode table are two more tables. The first table explains the color
coding of the opcode table. The second table defines the bit assignments of bit fields in the opcode table.

Addressing opcode bits
Modes 15[14]13]12]11]10] 9[8[7]6]5]4[3]2]1]0
absl |Rs,Rd 11| rs JoJo]o Rd [of1]1]1]o
adcf |Rs,Rd 1[1] Rs [o]o]1 Rd [ofof1]1]o
addc |Rs0,Rs1,Rd o[o] RsoO Rsl Rd [of1]1]1]o
addh |[C16,Rb C16 Ro [ofof1]1]a
addt |RSO.RSLRd 0J]o] Rs0 | Rs1 Rd [ofof1f1]o
C8u,Rb C8un Ro [of1]1]1]a
adsp [C7s,Ad 1]0 Csr | Aad J2]1]o]1]o0
andb |RSO.RsLRd 0[/o] RsO | Rsi Rd [1]of1]1]o0
C8,,Rb C8y Ro [1]ofa1]1]1a
br al [I08s 108 s 1lafofafafa1]o]1
brer 108 < 108 olof[1]1]o]1]0]1
brge 1085 108 s o[a]a]a]a]1]0]a
brgt 108 < 108 1lofafafaf1]o0]1
brhi 1085 108 s olof[1]1]1]1]0]a
bric_ [108 < 108 1lafafa{af1]o0]a
brie 108 108 s 1lofofafafa1]o]1
brlo 108 < 108 o[1]of1]1]1]0]1
bris 108 108 s olofof1]1]1]0]1a
brnc 108 < 108 olofof1]ol1]0]1
brng 1085 108 s 1lafafa{of1]o0]1
brno [108 < 108 o[1]of1]ol1]0]1
brnz [I08 s 108 s 1lofofa{of1]o0]1
brof [I08 s 108 o[1]1]1]ol1]0]1
brps 1085 108 s 1l1fofa{of1]o0]1
brzr 108 108 1lof1f1]of1]0]1
bt |RSO.RSLRd 0[1] RsO | Rsi Rd [1]ofo]1]o
BTI4,Rb 1]1 BTI4 J1]o Rb [1]o]of1]0
bt |RSO.RSLRd 0[1] RsO | Rsi Rd [1]1]o]1]o0
BTI4,Rb 1]1 BTI4 J1]o Rb [1]1]of1]0
biig Rs0,Rs1,Rd 0[1] RsO | Rsi Rd [1]1]1]1]o0
BTI4,Rb 1]1 BTI4 J1]o Rb [1]1]af1]o0
bts [RSO.RSL 0[/1] Rso | Rst |oJoJof1]o1[1]0
BTI4,Rs 1[1 BTI4 1]0 Rs [1]ofa1]1]o
clas |implied olofJoJoJoJoJo|a]a]ofa]o]1]1]0]a
clie [implied olofoJoJoJolola]ofol1]o]1]1]0]1
clzr |Rs,Rd 1[1] Rs [o]o]o Rd [1]of1]1]o0
cmpc |RsO,Rs1 1/0 RsO Rsl1 0(0|1|1|0]|0]1]O
Rs0,Rs1 1[0] RsO Rsi |o]ofof1]ofo]1]o
comp 1]0 C8a Rs1 1]0[1]1]0
CBuRs1 C8, Rsl [1[1[1]1]1
cpef [Rs 1]1 Rs |ofoJa]o]JoJofoJ1]of1]0
invt|Rs,Rd 1[1] Rs Jo]o]o Rd [1]ofo]1]o
o NAL2 IA12 olofo]1
WM i blied o[oJoJoJoJoJoloJoJoJoJo]z]z]o]1
. 1A12 IA12 1]/ofof1
jpsr -
implied ofoJoJoJoJoJoJoJoJoJ1]o]1a]1]o0]1
DA8,Rd DAE Rd [o]oJo]o]o
(DO5s,An),Rd DO:s 0] An Rd [o]of1]o]o
(Rx,An),Rd ofo] Rx [1] An Rd [o]of1]o]o
Idbt [(An)+,Rd o[1][ofJoJo[1] An Rd [o|of1]o]o0
- (An),Rd o[1]ofof1]1] An Rd [o]of1]o]o
(An)*,Rd o[1][of1]o]1] An Rd [o]of1]o]o0
(An)+,RGS 1]6]5]4]3]1] Aan [2]1]0fo0]o]1]0]0
DA8,Rd DAE Rd [o]1]o]o]o
(DO5s,An),Rd DO%s 0] An Rd [o]1]1]o]o
(Rx,An),Rd o[o] Rx [1] An Rd [o]1]1]o0]o0
ldsh [(An)+,Rd o[1]oJoJo[1] An Rd [o|1]1]0]o0
- (An),Rd o[1][ofo]1]1] An Rd [o]1]1]o0]o0
(An)*Rd o[1]of1]o]1] An Rd [o]1]1]o0]o0
(An)+,RGS 1]6]|5]4a]3]1] Aan [2]T][s|o]1]1]0]o0

51

Property of RACORS GmbH

Rev. 1.0

05.12.2013

RACO

(QR’S sf16 base (b) ISA Reference Manual

mfdp [Rd 1]1]ofoJoJof1]1 Rd [oJoJof1]o
mfsr_|SRs,Rd 11| SRs [o]1]1 Rd [o|1]o]1]o0
mihs |RsO,Rs1,Rd 1/0] RsO Rsl Rd [o|of1]1]o0
mihu [Rs0,Rs1,Rd 1/0] RsO Rsl Rd [o|ofof1]o
Rs,Rd 1]1 Rs |o]o]o Rd [o]ofof1]o0
move
C9s,Rd CSs Rd [coloof1]1
mtdp [Rs 1[1]ofofofof1]1 Rs |o]ofaf1]o
misy [RS:SRd 1/1] SRe Jo]1]1 Rs [o|1]1]1]o0
C7,SRLd 1o C7 [sRid[1[1[1]1]0
mult |Rs0,Rs1,Rd 0[o| RsoO Rsl Rd [1]ofof1]o0
negt |Rs,Rd 1/1] Rs JoJo]o Rd [o|1]o]1]o0
rsie |i mplied ololoJoJolofo|a]o]1]ofofa]a]o]1
rspc |implied 0/0|O0|JO|O|O|O|O|1|2|1]|0|1]|1]0]1
rtir__|implied olo|ofofJolofo]ofof1]1]ofa]a]o]1
rtsr__|implied oloJofofJolofo]ofof1]ofof1]a]0o]1
shef [Rs,Rd 1/1] Rs Jo]o]1 Rd [o|ofof1]o
<hif |RSO.RsLRd 0[1] RsO Rsl Rd [o|1]o]1]o0
SHC4,Rb 1]1 SHC: [1]o0 Rb |[of1]of1]0
<hlz |RSO.RsLRd 0[1] RsO [Rsl Rd [o|ofo]1]o
SHC4,Rb 1]1 SHC: [1]o0 Rb [o]ofof1]o0
<hrs |RSO.RsLRd 0[1] Rs0O [Rsl Rd [of1]1]1]o0
SHC4,Rb 1]1 SHC: [1]o0 Rb [of1]1f1]o0
<hry |RSO.RsLRd 0[1] Rs0O [Rs1 Rd [o|of1]1]o0
SHC4,Rb 11 SHC¢ 1]o0 Rb [ofof1]1]o0
scie |implied olofJoJoJoJoJo|a]ofafafo]1]1]0]2
siah [IAH4 olo|oJo]ofo]o IAH4 olof1]o]1
stas [implied ololofoJolofofJa]a]o]ofo]a]a]o]1
Rs,DA8 DAE Rs [1]o]o]o]o
Rs,(DO5 s,An) DO%s 0] An Rs |1|of1]o]o
Rs,(Rx,An) o[o] Rx [1] An Rs [1]of1]o]o0
stbt |Rs,(An)+ o[1]oJoJof1] An Rs |1|of1]o]o
Rs, - (An) o[1]ofof1[1] An Rs [1]of1]o]o0
Rs,(An)* o[1]of1]of1] An Rs |1|of1]o]o
RGS,(An)+ 1]/of1]2[3]1] An [4]5]6[2]0]1]0]0
stie _|implied ololofofJolofo]1a]oo]ofof1]a]0]1
stop_|implied o[oJofofJofofo]of1]o]Jofofa]a]o]1
Rs,DA8 DAE Rs |1|1]o]o]o
Rs,(DO5 s,An) DO%s 0] An Rs [1]1]1]o]o0
Rs,(Rx,An) 0|0 Rx 1| An Rs 1]1[1]0]0
stsh [Rs,(An)+ 0|1]0]0]|0]|1] An Rs 1|(1|1]|0]0
Rs, - (An) o[1]ofof1[1] An Rs [1|2]1]0]o0
Rs,(An)* o[1]of1]of1] An Rs [1]1]1]o0]o0
RGS,(An)+ 1[s|T]2]3]1] Aan J4a]5]6[1]1]1]0]0
subc [RsO,Rs1,Rd 0[o0]| RsoO Rsl Rd [o|1]o]1]o0
subf |RSO.RsLRd 0[o] RsoO Rsl Rd [o|ofo]1]o
C8u,Rb [Rb [of1]of1]1
svpc_|implied oJloJoJoJoJoJoJola]1]ofo]1]a]o]1
sxbt_[Rs,Rd 1/1] Rs Jo]o]o Rd [1]1]o]1]o0
sxsh |Rs,Rd 1/1] Rs Jo]o]o Rd [1]2]1]1]o0
xorb_|RsO,Rs1,Rd 0[o] RsoO Rsl Rd [1]1]1]1]o0

The next table explains the color coding used in the opcode table above.

Color

Description of table entries

Register select field, selects a register of the programming model

Constant field

Fixed coded bits used to distinguish between instruction groups and individual instructions within groups

The next table defines the bit assignments of register select and constant fields in the opcode table. The left
column contains the names of one or more register select or constant fields. If there are more fields
separated by semicolons then all of these fields have the same format. The right 16 columns define how the
multi-bit fields from the left column are mapped into 16-bit opcodes. For all left column fields except RGS the
numbers given in the opcode columns define the bit positions and bit ordering of the multi-bit field(s)

specified in the left column.

Among the register specifications RGS is a special case. 7 bits of the opcode marked with single-characters
represent the 7 possible registers of a register selection. Bits that are set are part of the register selection

bits that are cleared are not part of the register selection. The single character markings relate to registers in
the following way:

52

Property of RACORS GmbH

Rev. 1.0

~

RACORS

sf16 base (b) ISA Reference Manual

05.12.2013

« Bits marked O to 6 represent registers RO — R6
e The bit marked T represents register TA
e The bit marked S represents register SA

Note that the RGS coding is different (reversed) for the (An)+ and —(An) addressing modes and the group
of registers that can be part of an RGS is different for byte load/store instructions and for short load/store

instructions.
. opcode bits
Opcode field 15]14[13[12[11]10] 9[8[7]6]5]4]3]2]1]0
Rs, Rs0, Rx,SRs,SRd 2[1]o0
Rsl 2]1]o0
Rs,Rs1,Rd,Rb 2]1]0]
An [1]0
Ad,SRLd 1]0
RG¢ for Idbt 6[5[4]3 2[1]o0
RGS for Idsh 6543 2[T]s
RG¢ for stbt ol1[2]3 4|56
RGS for stsh S|T|2]|3 4156
DAE a]3|2]1]o]7]6]5
DO 4]3]2]1]0
C7u,C7 nC7 s 5/4[3]2[1]0]6]
C8,108 s 7]6ls5]4a[3]2]1]0
C8, positive 716|5(4(3|2]1]|0
C8, negative 5/4|3]2]|1]|0
C9% 7]6|5]4a3]2]1]0 [8]
SH4,BTI 4 3[2]1]0
IA 12 11J10]{9 |87 |6 [5]4a[3]2]1]0]
IAH4 3[2]1]o0
53 Property of RACORS GmbH Rev. 1.0

