~

RACORS

sf1B6bu

16-bit microprocessor

IMA (Implementation Architecture)
Reference Manual

Revision 0.9
24 December 2013

Author: Martin Raubuch

Property of RACORS GmbH

(Q’ sf16bu IMA Reference Manual

24.12.2013
RACORS
Revision History
Revision | Date
0.9 24Dec2013 | First version
2 Property of RACORS GmbH Rev. 0.9

l@’ sf16bu IMA Reference Manud 24.12.2013
RACORS
Table of contents
(I O YT YT TP 4
N 1 1 o Yo U o3 o] o R 4
1.2 FEAUIE SUMMAIY ...ttt e et e e et e e e e e e e e e e ee b e e e e eesa e e eennaaaaeees 4
1.3 Scope of thiS MANUALcooeviiiei e 4
A V(O @)Y =T Y Y 5
3 INtErface DELaAIlS. 7
G 20 N 1 11 (8 Lo 1[0 o N T =Y (o o T 7
G T BT 1 = AN o] ol =11 TSP 8
TG I [1= ¢ (U] o PP PPPPPTTT 10
K I = o o 11
B RSB i 14
4 Instruction EXecution TiMING.........oiiviiiiieriiiiee e e e e e e e e e e eae 15
4.1 Effective EXECULION TIMES ...ccuuiiiii it e e e et e e e e eaas 15
S 7= | I o T 140 1 1 16
5 CompPatibDilityuuieieii e 19
T S (01 11T | (= 19
T2 o = 10 111Y7= (= 19
RGN B LT o] F= Tot =10 0= | A o] 1o 1 19

3 Property of RACORS GmbH Rev. 0.9

l@’ sf16bu IMA Reference Manual 24.12.2013
RACORS

1 Overview

1.1 Introduction

The sf16 family of 16-bit microprocessors is targeted at embedded control applications that have high
performance requirements and are satisfied with a direct addressable data space of 64kBytes. With fixed
length 16-bit instruction coding the architectural focus is on high clock rates and small core implementations.

The sf16 family defines two ISAs (Instruction Set Architectures), a base (b) ISA for general purpose control &
computing and a (d) DSP ISA extension for small 16-bit DSP applications. This manual is the IMA
(Implementation Architecture) reference of the sf16bu, the (u) ultra light implementation of the sf16 (b) base
ISA.

1.2 Feature Summary

The following list summarizes the sf16bu’s main features

« Focused on small core size

e 16-bit wide instruction and data interfaces

* Register file with 1/1 read/write ports and one cycle read-latency, can be implemented as RAM
« Single cycle effective execution of computation instructions with one register source operand
« Two cycles effective execution of computation instructions with two register source operands
« Two cycles effective execution of most load and store instructions

e lterative shift execution with one bit per cycle

e Average IPC (Instructions Per Cycle) of 0.5 for typical code sequences

e 2 Xx 16-bit instruction pre-fetch buffer

« Fully synchronous design, all flip-flops are triggered with the rising edge of the clock input

e Clock rates up to 130MHz on low end FPGAs

e Clock rates >300MHz with deep sub-micron std-cell generic and low-power technologies

1.3 Scope of this manual

This sf16bu IMA reference manual contains the following detailed descriptions:

« |/O Overview, overview of interfaces and 1/O signals

* Interface Details, detailed I/O signal descriptions and interface timing

e Instruction Execution Timing, effective execution time of instructions, data dependencies and stall
conditions

« Compatibility, hardware and software compatibility, drop in replacement options

ISA specific details such as programming model and instruction set are not part of this IMA reference

manual. This information can be found in the base (b) ISA (Instruction Set Architecture) reference manual.

4 Property of RACORS GmbH Rev. 0.9

RACORS

()

sf16bu IMA Reference Manual

24.12.2013

2 1/O Overview

sf16bu
<1 A[15: 0] DA[15: 0] |—»
Instruction ' .
Cetch <« FNS DBS[1: 0] — Data
—{11[15: 0] DVE |—» Access
—{ | RDY DI [15: 0] je——
_iro DRDY [¢——
Interrupts { —{I R\[3: 0] DBGI [15: 0] |+——
<+—]| ACK STRQ|e——
Reset N oy lESNg; : Debug
STPDf—>
Clock —{CLK
Signal Direction | Width Description
I Al 15: 0] Output 16 | Instruction Address
| FT Output Instruction Fetch
I FNS Output 1 Instruction Fetch Non Sequential
I1[15:0] Input 16 Instruction In
| RDY Input 1 Instruction Ready
I RQ Input 1 Interrupt Request
I RN[3: 0] Input 4 Interrupt Number
I ACK Output 1 Interrupt Acknowledge
RST Input 1 Reset
CLK Input 1 Clock
DA[15: 0] Output 16 | Data Address
DJ 15: 0] Output 16 Data Out
DBS[1: 0] Output Data Byte Strobes
DVWE Output Data Write Enable
DI [15: 0] Input 16 | Dataln
DRDY Input 1 Data Ready
DBdA [15: 0] Input 16 Debug In
STRQ Input Stop Request
I NJI Input Inject Instruction
DBGJ 15: 0] Output 16 Debug Out
STPD Output 1 Stopped

Clocking

The sf16bu is a fully synchronous design. All flip flops are triggered with the rising edge of the CLK input. All
output changes occur after the rising edge of CLK. All inputs are sampled with the rising edge of CLK. To
enable very small core sizes especially on FPGAs the register file can be implemented as synchronous RAM

with one cycle read latency, driven by CLK.

5 Property of RACORS GmbH

Rev. 0.9

(Q’ sf16bu IMA Reference Manual 24.12.2013
RACORS

Control signals asserted state

All control signals are active high. The asserted state is ‘1’ and the de-asserted state is ‘0. The following
signals are affected: | FT, | FNS, | RDY, | RQ, | ACK, RST, DBS[1: 0] , DWE, DRDY, STRQ, | NJI , STPD.

Debug Interface
If the debug interface is not used inputs STRQ, | NJI and DBA [15: 0] should be connected to ground.

6 Property of RACORS GmbH Rev. 0.9

"y
Q sf16bu IMA Reference Manual 24.12.2013

RACORS

3 Interface Detalils

3.1 Instruction Fetch

Signals
I Al 15: 0] Instruction Address (output); When | FT is asserted | A[15: 0] is the address of the 16-
bit instruction word to fetch. When | FT is de-asserted | A[15: 0] is don't care.
I FT Instruction Fetch (output); | FT is the main control signal of the instruction fetch interface.

When | FT is asserted outputs | Al 15: 0] and | FNS are valid. When | FT is de-asserted
these outputs are don't care.

I FNS Instruction Fetch Non Sequential (output); When | FT is asserted | FNS indicates if the
fetch is sequential (1 A[15: 0] = address of the preceding fetch + 1) or not (any address
due to a change in program flow). When | FT is de-asserted | FNS is don't care.

I'1]15:0] Instruction In (input); When | RDY is asserted | | [15: 0] must be a valid instruction word.
When | RDY is de-asserted | | [15: 0] is ignored.
| RDY Instruction Ready (input); | RDY is the acknowledge handshake signal following | FT

instruction fetch requests. | RDY must be asserted only as a response to an | FT request.
For zero wait state instruction fetches | RDY must be asserted in the cycle following an

| FT request. Wait states are inserted by delaying the assertion of | RDY by the required
#of clock cycles.

General Rules

The sf186bu instruction fetch timing is designed for direct connection of synchronous memories. The following
rules apply:
* Based on a handshake with | FT as request and | RDY as acknowledge
e For zero wait states fetches | I [15: 0] must be provided and | RDY must be asserted in the
next cycle following an | FT request.
« IfI1][15: 0] is not ready in the next cycle following | FT an arbitrary number of wait cycles can
be inserted by delaying the assertion of | RDY until I | [15: 0] is ready.
e | FT asserted with | FNS de-asserted indicates sequential fetches. The address | A 15: 0] is
the address of the preceding fetch + 1.
« | FT and | FNS both asserted indicate non-sequential fetches. | A[15: 0] can have any value
with no relation to the preceding fetch. A preceding fetch not yet completed is aborted. The next
| RDY and related | | [15: 0] are interpreted as response to the non-sequential fetch.

Sequential Fetches

The figure below shows sequential instruction fetches with | FNS de-asserted. There are gaps with no
instruction fetches in cycles 1, 5 and 7. This is because typical sf16bu execution rates are < 1 per cycle and
the processor fetches sequential instructions only when there is space available in its pre-fetch buffers. The
pre-fetch buffer concept makes sure that the processor never discards and re-reads sequential instruction
words independent of instruction execution times and pipeline stalls.

The fetches in cycles 2, 3, 4, and 6 are done with zero wait states. Instruction words i0, i1, i2 and i3 read
from addresses a0, al, a2 and a3 are provided in the next cycle following the fetch and | RDY is asserted.
Fetching of instruction words i4 and i5 from addresses a4 and a5 in cycles 8 and 9 is done with 1 and 2 wait
states respectively. Fetching of i6 from a6 is done with zero wait states again.

The fetches with wait states show an important behavior of the sf16bu’s pipelined instruction interface. With
no pending fetch (waiting for | RDY of the preceding fetch) | FT is asserted with | A[15: 0] and | FNS valid
for only one cycle. The fetch from a4 in cycle 8 of the diagram illustrates the behavior. In cycle 9 the next
fetch from a5 is driven on the interface. Because the fetch from a4 is not acknowledged yet in cycle 9 the
fetch from a5 remains stable on the interface. This means that bus logic that inserts wait states, e.g. to let
another client access the instruction memory must latch the instruction address. E.g. if in the example shown
below the bus controller grants access to the instruction memory to another client in cycle 8 and then reads
from a4 in cycle 9 to have i4 ready in cycle 10 the address a4 must be latched in a register because it is not
available anymore at the interface in cycle 9.

7 Property of RACORS GmbH Rev. 0.9

(Q’ sf16bu IMA Reference Manual

24.12.2013
RACORS
cyclel23456.7.891011121314

a JULUUUULUUUUUUL

| Al 15: 0] aoXaLXa2X 03X Xa4X a5 a6

1] 15: 0] X DEE .3 T a00000G 5 X1 6XX

| RDY

Sequential instruction fetches with and without wait states

Non Sequential Fetches

Non sequential instruction fetches occur as a result of program flow changes (jump, branch, return or
interrupt). The processor flushes the instruction pre-fetch buffer and does not wait for | RDY of a preceding
fetch. If | RDY is asserted in the same cycle the corresponding instruction word | | [15: 0] is ignored. A
pending instruction fetch that has not been acknowledged yet when a non-sequential fetch occurs is aborted.
This means that the first | RDY following a cycle with | FNS asserted is always interpreted as acknowledge of
the non-sequential fetch.

The next figure shows some example non-sequential fetch timings. The first example is in the middle of a
fetch sequence with no wait states. In cycle 4 | FNS indicates a non-sequential fetch from a2. Instruction
word i1 from the fetch in cycle 3 is discarded. The second example shows a case where a preceding fetch is
aborted. The non-sequential fetch from a5 is started in cycle 8. Due to wait states the preceding fetch from
a4 is not completed yet. The instruction bus logic aborts this fetch and reads directly from a5. Instruction
word i5 is delivered (in the example with one wait state) in cycle 10.

cycle 1 2 3 4 5 6 7 8 9 10 11 12
cLK Juyyyuduuiuuy
| A[15: 0] VX aoxgxg)@gxxz)@@)(6 X
| FT
I FNS
11 15: 0] oXi X 2 3X0000000 85X X
| RDY .

Non sequential instruction fetches

In systems with no instruction fetch wait states, e.g. with a synchronous instruction memory directly
connected output | FNS can be ignored. In systems with wait states e.g. with an instruction cache or with
debug access to the instruction memory | FNS must be used to abort pending fetches.

3.2 Data Access

Signals
DA[15: 0] Data Address (output); when DBS[1: 0] is asserted (!=0) DA[15: 0] is the byte address
of the data access. When DBS[1: 0] is de-asserted (==0) DA[15: 0] is don't care.
DJd 15: 0] Data Out (output); for write accesses (DBS[1: 0] !=0 and DVIE asserted) DJ] 7: 0]
provides the low byte data if DBS[0] is asserted and DJ 15: 8] provides the high byte
8 Property of RACORS GmbH Rev. 0.9

l@’ sf16bu IMA Reference Manual 24.12.2013
RACORS

data if DBS[1] is asserted; when DBS[0] or DVIE are de-asserted DJ 7: 0] is don't care;
when DBS[1] or DVIE are de-asserted D] 15: 8] is don't care

DI [15: 0] Data In (input); when DRDY is asserted as response to a read access low byte input data
is expected at DI [7: 0] if DBS[0] was asserted and high byte data is expected at
DI [15: 8] if DBS[1] was asserted; data at DI [15: 0] is ignored when DRDY is de-
asserted and when for a read access DBS[0] was de-asserted (high byte read, DJ 7: 0]
ignored) or DBS[1] was de-asserted (low-byte read, DJ 15: 8] ignored)

DBS[1: 0] Byte Strobes (output); DBS[1: 0] is the main control signal of the data access interface.
When DBS[1: 0] is asserted (!1=0) outputs DA[15: 0] and DV are valid. With DVE
asserted DJ 15: 0] provides the low and/or high byte data. When DBS[1: 0] is de-
asserted these outputs are don’t care. DBS[1: 0] also indicates if a data access is a low-
byte only access (DBS[0] asserted, DBS[1] de-asserted), a high-byte only access
(DBS[0] de-asserted, DBS[1] asserted) or a 16-bit access (DBS[0] and DBS[1] both

asserted)

DVE Data Write Enable (output); When DSB| 1: 0] is asserted (!1=0) DVE indicates if the data
access is a read (DWE=0) or write (D\\E=1); When DSBJ 1: 0] is de-asserted (==0) DVE is
don't care

DRDY Data Ready (input); DRDY is the acknowledge handshake signal following DBS[1: 0] =

0 data access requests. DRDY must be asserted only as a response to a DBS[1: 0] =0
request. For zero wait state data accesses DRDY must be asserted in the cycle following
a DBS[1: 0] request. Wait states are inserted by delaying the assertion of DRDY by the
required #of clock cycles.

General Rules

As with the instruction interface the sf16bu data interface is designed for direct connection of synchronous
memories. A specialty of the (u) ultra light implementation is that ALU and load/store hardware resources are
shared. As a result the sf16bu can perform data accesses only in every second cycle. The following rules
apply:
« Based on a handshake with DBS[1: 0] as request and DRDY as acknowledge
e For zero wait access DRDY must be asserted in the next cycle following a DBS[1: 0] request;
for read accesses data must be provided at DI [15: 0] in that cycle.
e If an access can't be serviced with zero wait states an arbitrary number of wait cycles can be
inserted by delaying the assertion of DRDY.
« The maximum access rate is one access every two cycles. But the interface is still pipelined. In
case of wait states two accesses can be completed in two consecutive cycles.

Timing

The following diagram shows the sf16bu data access timing. Cycles 2 to 13 are zero wait state accesses of
all possible types regarding read/write and data size (low-byte, high-byte or 16-bit). They show that the
active part of the data in/out interfaces depends on DBS[1: 0] . For write accesses the active part of

DJ 15: 0] depends on the state of DBS[1: 0] in the same cycle. For read accesses the active part of

DI [15: 0] in the cycle where DRDY is asserted depends on the state of DBS[1: 0] in the corresponding
request cycle.

Cycles 14 to 18 are data accesses with wait states and show two effects that are important to keep in mind
when designing data bus control logic for the sf16bu. As with the instruction fetch interface with no pending
transaction output signals are driven for only one cycle. Example is the 16-bit write of data d6 to address a6
in cycle 14. The processor then starts a high byte read from a7 in cycle 16. Because the write from cycle 14
is not completed yet the output signals (in this case DA[15: 0] and DBS[1]) are extended until the
preceding access is completed in cycle 17. In systems with data access wait states the bus control logic
must latch the output signals to be able to perform the access later when these signals are no longer valid.

9 Property of RACORS GmbH Rev. 0.9

(Q’ sf16bu IMA Reference Manual 24.12.2013
RACORS

cycle 1 2 3 4 5

CLK JUUL
DA[15: 0] 000EOXN XY

DBS[0] __
DBS] 1] ava _/ !
ove /N

D[7:0] oYX X X
DI [15: 8] do d2))000X d7X¥
DO 7:0])X d3>(XX>@ 46
D] 15: 8] XX d3 d5><XXXdE
DRDY /NSNS SN _

Data access timing

10 11 12 13 14 15 16 17 18

JERERERUARQERERE
XXEXIENIN a7

=1

JURERERERNA
XerXTEZX0EXY
/ _

\

Jl B c

The second effect is the bus pipelining. Although the maximum access rate is one access every two cycles
the bus is still pipelined as shown in cycles 17 and 18 where two accesses are completed in two consecutive
cycles.

3.3 Interrupts

Signals
I RQ Interrupt Request (input); | RQasserted signals an interrupt request with number
| RN[3: 0] to the processor
I RN[3: 0] Interrupt Number (input); when | RQis asserted | RN[3: 0] is the number of the
requested interrupt; when | RQis de-asserted | RN[3: 0] is ignored
I ACK Interrupt Acknowledge (output); | ACK is asserted for one cycle when the processor has

latched | RN[3: 0] and starts interrupt execution.

General Rules

* Interrupts are acknowledged and executed only if enabled (see ISA reference manual)

e The interrupt number | RN[3: 0] may be changed from cycle to cycle at any time also while
I RQis asserted. When | ACK is asserted the | RN 3: 0] of the preceding cycle has been
latched and the corresponding service routine will be executed.

« Simple interrupt controllers with no request queuing can ignore the | ACK signal

Timing

The following diagram is an example interrupt timing of a sf16bu system. Interrupt processing affects also
signals of the instruction fetch and data access interfaces. To keep the diagram simple and clear only
sections that are relevant for interrupt processing are shown for each signal and all instruction and data
accesses are completed with zero wait states.

The sequence starts in cycle 2 with the assertion of | RQand interrupt number Ij on | RN[3: 0] . In most
cases if the processor is not already executing another interrupt | ACK is asserted in the next cycle following
I RQ. In the example | ACK is asserted later in cycle 5 to demonstrate that | RN[3: 0] is allowed to change
while | RQis asserted. | ACK asserted in cycle 5 means that the | RN[3: 0] value Ik of cycle 4 has been
latched inside the processor and is the interrupt number that will be processed. Output | FNS is not shown in
cycles 1 to 6 because it is not relevant if the last instructions fetches before an interrupt is started are
sequential or non-sequential.

10 Property of RACORS GmbH Rev. 0.9

(Q’ sf16bu IMA Reference Manual 24.12.2013
RACORS

Starting with the cycle where | ACK is asserted instruction fetching stops and the processor waits until all pre-
fetched instructions have been executed and the pipeline is completely empty. The number of cycles
required to complete this phase is not deterministic and depends on the following:

* Number of instructions in the pre-fetch buffer

e A possible pending instruction fetch (one more instruction to execute)

* Wait states of a pending instruction fetch

« Data dependencies and associated pipeline stalls caused by the instructions to execute

» Data access wait states in case there are load/store instructions to execute
With zero wait state instruction fetches and data accesses typical times to flush the pipeline are 6-10 cycles.

6 10 11 12 13

Uy Judududuuy

cycle 1 2

3
oLk Jyuu
I RQ
| RN[3: 0]]

— =

8

I ACK

| Al 15: 0] HX0Xao
| FT

=Bl

DR

=
E=e

@

I FNS

I1[15:0] i0

| RDY
DA[15: 0] Y
DBS[0]

BblC
=

DBS] 1]

DVE
DI [15: 0] OO VXXX
DRDY _

Interrupt Timing

When the pipeline has been flushed the start address of the interrupt service routine is read from the
interrupt vector table in data memory. DBS[0] and DBS[1] both asserted in cycle 7 (16-bit data access) with
DVEE = 0 (read) indicate the reading of the interrupt vector from address ai. With no wait states the data
access is completed in cycle 8 with DRDY asserted and the instruction vector iv available at DI [15: 0] .

In cycle 9 fetching of instructions of the interrupt service routine starts. The first fetch from a2 (a2 = iv) is
non-sequential and | FNS is asserted. Because the pre-fetch buffers and execution pipeline are completely
empty there are at least three consecutive instruction fetches as shown in the diagram.

3.4 Debug

Signals

DBA [15: 0] Debug In (input); this port is used to inject instructions into the processor and to provide
input data for the nf dp (move from debug port) and r spc (restore PC) instructions; when
I NJI is asserted DBG [15: 0] is interpreted as 16-bit opcode of the instruction to be
injected; when a nf dp or r spc instruction is injected source data must be provided at
DBA [15: 0] from the cycle following the assertion of | NJI .

11 Property of RACORS GmbH Rev. 0.9

l" sf16bu IMA Reference Manual 24.12.2013
RACORS
STRQ Stop Request (input); the debug module asserts this signal to bring the processor into the

debug state. The processor stops fetching new instructions and flushes its pipeline
(executes all pending instructions and instructions in the pre-fetch buffer). As long as
STRQremains asserted the processor is held in the debug state; when STRQis released
the processor resumes normal operation.

I NJI Inject Instruction (input); when the processor is in the stopped state (STPD asserted) the
debug module asserts | NJI for one clock cycle to inject and execute individual
instructions; in the cycle where | NJI is asserted the opcode of the injected instruction
must be provided at DBA [15: 0] ; when the processor is not in the stopped state | NJI
is ignored.

DBGJ 15: 0] Debug Out (output); when in the stopped state a nt dp (move to debug port) or svpc
(save PC) instruction is injected and executed destination data is provided at
DBGJ 15: 0] .

STPD Stopped (output); STPD asserted indicates that the processor is in the stopped state. The
processor enters the stopped state after flushing its pipeline either when STRQis asserted
by the debug module or when a st op instruction is executed.

General Rules

e To use the sf16bu debug features a separate debug module is required that connects to the
processor’s debug interface and the debug Host PC. If debug functionality is not required the
input signals of the debug port DBA [15: 0], STRQand | NJI should be tied to GND.

« Injecting and executing instructions via the debug port is possible only when the processor is in
the stopped state indicated by the STPD output signal.

* The stopped state is entered from normal operation either by asserting the STRQinput or by
executing a st op instruction.

* Toresume normal operation when the stopped state has been entered by STRQassertion STRQ
must be de-asserted.

e Toresume normal operation when the stopped state has been entered by executing a st op
instruction STRQmust be asserted and then de-asserted.

Timing

The first diagram following shows the interface timing at the beginning and end of the stopped state. The
signals of the debug and instruction fetch interfaces are shown. In cycle 2 STRQis asserted. Starting with the
next cycle the processor stops fetching new instructions. Pending instructions and instructions in the pre-
fetch buffer are executed until the pipeline is completely empty same as after an interrupt acknowledge.
When the pipeline is empty (6-10 cycles with no wait states) the STPD output is asserted indicating that the
stopped state has been reached.

The stopped state can also be entered by executing a st op instruction during normal operation. When a

st op instruction is executed remaining instructions in the pre-fetch buffer are discarded and the processor
asserts the STPD output and enters the stopped state when the execution pipeline has been flushed.

In the diagram STRQis de-asserted again in cycle 7 only 2 cycles after the stopped state has been entered.
Normally this would not make much sense but the purpose of this diagram is to illustrate the timing only at
the beginning and end of the stopped state.

In the next cycle after STRQhas been de-asserted the processor starts fetching instructions again. One cycle
later in cycle 9 the STPD output is de-asserted indicating that the processor has resumed normal operation.

12 Property of RACORS GmbH Rev. 0.9

'5\335 sf16bu IMA Reference Manual 24.12.2013

cycle 1 2 3 4 5 6 7 8 9 10 11

oLk JUduy Juyyuyuyuy

STRQ

I NJI

STPD B

iap1s:0) XXX K XX

| FT _

| FNS X

npsio) XOOOME X XXX

| RDY \

Entering and leaving the stopped state

The second diagram shows the timing of instruction injection and data I/O via the debug port while the
processor is in the stopped state. The STRQsignal is not shown because it is not relevant if the stopped state
has been entered due to STRQassertion or after the execution of a st op instruction. Regarding interface
timing there are three types of instruction injection:
1. Injection with data input from DGBI [15: 0] ; only the dedicated debug instructions nf dp and r spc
take a source operand from the debug port
2. Injection with data output to DGBJ 15: 0] ; only the dedicated debug instructions nt dp and svpc
output a destination operand to the debug port
3. Injection with no data 1/O; all other instructions are of this type
The injection and execution behavior is common to all three types. The debug module asserts | NJI for one
cycle and drives the opcode of the instruction at DBA [15: 0] . Three cycles later the processor de-asserts
STPD which indicates the execution of the injected instruction. STPD is asserted again when execution has
finished and the pipeline is completely empty. The number of cycles STPDis de-asserted depends on the
instruction. For some flow instructions like SVPC or RSPC STPD is de-asserted for only one cycle. For most
computation instructions it is 2 or 3 cycles. For load/store instructions with zero wait states data access it is
at least 4 cycles. Data access wait states add to the STPD de-asserted time. The debug module must wait for
STPD being de-asserted and asserted again before it can inject the next instruction.

A type 1 example starts in cycle 2 where opcode i0 is injected. In the following cycle when | NJI is de-
asserted the source operand dO is driven at DBA [15: 0] . It must be kept stable until STPD is re-asserted.

cycle 1 2 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

oK vy yyuyy

STPD T

DBG [15: 0] X dC i1 i 2X)0000(

| NJI [[

DBG][15: 0] di

Instruction injection and execution

A type 2 example starts in cycle 8 where opcode il is injected. When STPD is re-asserted in cycle 13 the
destination operand d1 is available at DBGJ 15: 0] . The example shows the behavior of an nt dp

13 Property of RACORS GmbH Rev. 0.9

(Q’ sf16bu IMA Reference Manual 24.12.2013
RACORS

instruction. The second type 2 instruction svpc has different timing. STPD is de-asserted for only one cycle
and the destination operand appears at DBGJ 15: 0] already in that cycle. The debug module should read
the destination operands of type 2 instructions when STPD has been re-asserted. DBGJ 15: 0] is always
valid then and remains stable until the next type 2 instruction is injected.

A type 3 example starts in cycle 14 where opcode i2 is injected. STPD is de-asserted for three cycles which
is a typical value for computation instructions.

3.5 Reset

Signals

RST Reset (input); this is a synchronous reset; when RST is asserted the processor is reset
with the next rising edge of CLK.

General Rules

« RST can be asserted at any time. The processor does not wait for any pending interface transactions
or instructions.

* RST needs to be asserted for only one active edge of CLK to fully reset the processor.

Timing

cycle 1 2 3 4 5 6 7 8 9 10

oLk JUyduuuuuy

RST
| RN[3: 0] a0[15: 12] X X X
| Al 15: 0] XXX a0 at)(a2)(_

I FT

| FNS X
DBS[0]

DBS[1]

DWE

I ACK

STPD

Reset assertion and release

The diagram shows the RST assert and release timing. Only signals that are directly affected are shown.
Output signals not shown are either undefined or keep their state. Beside RST the only input signal relevant
forresetis | RN[3: 0] .

In cycle 2 RST is asserted. In the following cycle (3) instruction fetching stops, | FT and | FNS are de-
asserted. One cycle later (4) all control outputs of the processor are de-asserted. | A[15: 0] takes the value
of the reset start address a0: | Al 15: 12] =1 RN[3: 0] and | A[11: 0] = 0. This state remains unchanged
as long as RST remains asserted.

In cycle 6 RST is de-asserted. | RN 3: 0] must continue to provide the upper 4 bits of the reset start address
for the following 2 cycles. In cycle 8 instruction fetching starts from a0. | RN[3: 0] can take any value from
this point.

14 Property of RACORS GmbH Rev. 0.9

(Q’ sf16bu IMA Reference Manual 24.12.2013
RACORS

4 Instruction Execution Timing

4.1 Effective Execution Times

The following table provides effective execution times for all sf16bu instructions except for the dedicated
debug instructions mt dp, nf dp, svpc, r spc and st op which are not for use in normal program code
sequences.

The numbers provided in the Cycles column are best case numbers assuming no stalls caused by operand
dependencies or data access wait states (load/store instructions). The Stalls column contains abbreviations
of stall conditions that are further explained in the “Stall Conditions” section later in this chapter.
Instructions are grouped by addressing modes and common execution time properties. Instructions with
multiple addressing modes may appear in different non-consecutive places.

Instructions Addressing Mode | Cycles Stalls Comment(s)
nove C9s, Rd 1 D2 -
nt sr C7, SRLd 1 D2 -
adsp Crs, Ad 1 D2, D4 -
addt subf addh
andb iorb By, RO 1 D1, D2 i
conp C8, Rs1 1 D1 -
nove negt absl inv
clzr sxbt sxsh Rs, Rd 1 D1, D2 -
adcf sbcf
cpcf Rs 1 D1 -
ntsr Rs, SRd 1 D1, D2 -
nfsr SRs, Rd 1 D1, D2 -
btst btcl bttg SHC4, Rb 1 D1, D2 -
btts SHC4, Rs 1 D1 -
addt subf addc subc
andb iorb xorb D1, D2
mult nlhu nihs RsO. Rs1, Rd 2 2 register read cycles
btst btcl bttg D1, D2, D3
shl z shlf shru shrs 3+n D1, D2, D3 | n = shift-count
SHC4, Rb 1+n D1, D2 (see note after table)
conp cnpc Rs0, Rs1 2 D1 2 register read cycles
Rs, DA8y
Rs, (DObs, An) .
2 data access wait states
Rs, (An) + D1 add to the effective
stbt stsh Rs, - (An) execution time
Rs, (An)*
Rs. (Rx, An) 3 D1 D3 n = #of register in RGS
RGS, - (An) 2*n D1
DA8, Rd -
(DObs, An), Rd Data access wait states
(o) I IRV ekt
-(An), Rd
(An)*, Rd 3 n = #of registers in RGS
(Rx, An), Rd D1, D3

15 Property of RACORS GmbH Rev. 0.9

(0’ sf16bu IMA Reference Manual 24.12.2013
RACORS
(An), RGS 2*n D1
si ah | AH4 1 - -
stie clie scie rsie ol i ed 1
stas cl as P))
junp j psr | A12 2 - -
junp jpsr implied (TA) 3 D5 TA dependency
rtsr
_ i mpl i ed 3 D6 SP dependency
rtir - .
br al | GBs 2 - -
bric | CBs 2 D7 branch taken
1 branch not taken
brxx (conditional) | Bs 2 D8 branch taken
1 branch not taken

Shift Instructions
Two special cases exist regarding effective execution times of shift instructions:

1. With shift count n=1 the execution time is 1 with the SHC4, Rb addressing mode (instead of 1+n = 2)
and is 3 with the Rs0, Rb addressing mode (instead of 3+n = 4)

2. When during iterative shifting the operand becomes zero the instruction finishes immediately with
zero as destination operand regardless of the remaining shift count.

4.2 Stall Conditions

Extra cycles add to best case execution times if stall conditions occur during instruction execution. Two types
of stall conditions exist for the sf186bu:

1. Resource constraints; a pipeline architecture performs multiple actions on multiple instructions in the
various pipeline stages simultaneously and it can happen that more than one stage tries to use the
same hardware resource. In such cases one stage takes priority and the other has to wait. There is
only one condition of this type named R1.

2. Operand dependencies; instructions have to wait if one or more of their source or destination
operands are scheduled to be updated by a preceding instructions that has not finished execution
yet. These conditions are instruction and addressing mode specific. Eight conditions exist named D1
to D8. Affected instruction/addressing-mode combinations have the relevant conditions listed in the
Stalls column of the execution times table.

The following paragraphs are more detailed descriptions of individual stall conditions with hints how they can
be avoided.

R1 (Register write)
The sf16bu register file has a single write port accessed by the ALU output and by loads from data memory.
Because load instructions have two more pipeline stages compared to computation instructions it can
happen that a computation instruction following a load instruction tries to write its destination operand in the
same cycle as the load. There are two cases with different solutions if this conflict occurs:
1. The destination registers are different; the load instruction takes priority because it was first in
sequence and the computation instruction has to wait (is stalled).
2. The destination register is the same; the computation instruction takes priority because it is second
in sequence and overwrites the destination of the load. This case is connected to the D2 condition.
This condition is caused by the RAM implementation of the register file and is difficult to avoid. The following
can be done to reduce the statistical probability:
« Avoid computation instructions as the second instruction following a load instruction

« Group loads from memory together as much as possible; means avoid frequent switching between
load and computation instructions.

16 Property of RACORS GmbH Rev. 0.9

l@’ sf16bu IMA Reference Manual 24.12.2013
RACORS

Computation Latency

With the sf16bu pipeline structure register destination operands of computation instructions are updated only
one cycle after a directly following instruction reads its source operands. If the following instruction has the
same register as source operand this instruction would have to be stalled by one cycle to wait until the
source operand is ready. For most cases a forwarding mechanism is implemented that uses the ALU output
as source directly and bypasses the register file to avoid stalls. Exception is the D3 stall condition.

D1 (Source operand pending update)

The D1 stall occurs if instructions use the destination register of a directly preceding load from memory
instruction as source operand. Load from memory instructions update their destination register two cycles
after an immediately following instruction reads its source operands. As with destination operands of
computation instruction there is a forwarding mechanism that bypasses the register file and uses the load
from memory destination operand as source one cycle before it is written to the register file. But because of
two cycles latencies there is still a one cycle stall if an instruction uses the destination register of a directly
preceding load from memory instruction as source operand.

In many cases such stalls can be avoided by instruction re-ordering so that there is at least one other
instruction between the load from memory and the instruction that uses the load destination as source.

D2 (Destination operand pending update)

This affects all instructions with register destination operands. In the cycle where computation instructions
update register destination operands the register destination operand of a directly preceding load from
memory instruction has not been updated yet. If both instructions have the same destination register the
computation instruction has to be stalled until the load from memory has updated its destination. In fact the
sf16bu detects this case and stalls the computation instruction until the load tries to write the destination. But
then in this cycle the computation takes priority and the operand from memory is never written (see also R1
condition).

In closed software functions this case should never occur because it doesn’'t make sense to load a value
from memory into a register and then overwrite the register with the next instruction without using it as
source operand. It's necessary anyway to detect and implement this stall condition. It can occur e.g. at the
end of interrupts if the interrupt service routine restores registers from the stack (loads from memory) and the
first instruction of the interrupted code sequence e.g. is a move to one of the restored registers.

D3 (Computation destination not forwarded)

As described under Computation Latency a forwarding mechanism bypasses the register file to avoid stalls
if instructions try to read the destination register of a directly preceding computation instruction as source
operand. But there are some exceptions where forwarding is not done because it would create critical timing
paths and decrease the processor's maximum clock rate. The following types of register source operands
are affected and cause a one-cycle stall if the register is the destination operand of the directly preceding
instruction:

» Indirect shift counts of shift instructions

* Indirect bit index of bit manipulation instructions

« Index of load/store instructions with indirect + index addressing mode

To avoid D3 stalls instructions must be re-ordered such that the instruction that generates the register
destination operand is not the directly preceding instruction.

D4 (adsp with SP pending update)

In principle this is the same as D1 but for register SP (Stack Pointer) only and only the adsp instruction is
affected. The adsp instruction uses SP as source operand. A directly preceding instruction that updates SP
can cause a stall if there is no forwarding or if the update latency is more than one cycle. This is the case for
I dsh (An) +, RGS with SP contained in the register list (2 cycles latency) and j psr (one cycle latency but
no forwarding).

D5 (TA pending update)
This is similar to D4 but for register TA (Target Address) and only for the j unp and j psr instructions with

the implied addressing mode that use TA as source operand. There is no forwarding when TA is used as
indirect jump address. A preceding instruction that updates TA with a latency > the cycle distance to the

17 Property of RACORS GmbH Rev. 0.9

l@’ sf16bu IMA Reference Manual 24.12.2013
RACORS

j unp/j psr with TA as source causes stall cycles. This is the case for | dsh (An) +, RGS instructions with
TA in the register list and a cycle distance < 2 and for directly preceding nt sr Rn, TA instructions.

D6 (rt sr with SP pending update)

This is similar to D5 but for register SP (Stack Pointer) and only for the r t sr instruction that uses SP as
source operand. There is no forwarding when SP is used as return address. A preceding instruction that
updates SP with a latency > the cycle distance to the rt sr causes stall cycles. This is the case for | dsh
(An) +, RGS instructions with SP in the register list and with a cycle distance < 2 and for directly preceding
nt sr Rn, SPinstructions.

D7 (br | ¢ with LC pending update)

Again this is similar to D4-D6 but for register LC (Loop Counter) and for br | ¢ instructions which use LC as
source operand. There is no forwarding when LC is used as source operand of loop counter branches. A
directly preceding m sr Rn, LCinstruction causes a one cycle stall.

D8 (br xx with CC pending update)

This stall condition affects conditional branches which use the condition codes register CC as source
operand. There is no forwarding of the CC source operand. If the last preceding instruction that updates CC
has a cycle distance < 2 the conditional branch will stall until CC is updated. If a CC updating instruction is
directly preceding a conditional branch there will be two stall cycles. To avoid such stalls instructions should
be re-ordered if possible.

18 Property of RACORS GmbH Rev. 0.9

"y
Q sf16bu IMA Reference Manual 24.12.2013

RACORS
5 Compatibility
5.1 Software

The sf16bu is fully compatible with the sf16 (b) (base) ISA.

5.2 Hardware

The sf16bu interface signals and timing are the same as those of the sf16bl and sf16dl. These three
processors can replace each other without changing any surrounding hardware.

5.3 Replacement Options

sf16bu and sf16bl are software compatible and can replace each other regarding both hardware and
software.

The sf16dl can replace sf16bu and sf16bl regarding both hardware and software because it supports the
sf16 (b) (base) ISA.

19 Property of RACORS GmbH Rev. 0.9

