~

RACORS

sf20bl

16-bit microprocessor

IMA (Implementation Architecture)
Reference Manual

Revision 0.9
21 December 2014

Author: Martin Raubuch

Property of RACORS GmbH

(Q’ sf20bl IMA Reference Manud

21.12.2014
RACORS
Revision History
Revision | Date
0.9 21Dec2014 | First version
2 Property of RACORS GmbH Rev. 0.9

l@’ sf20bl IMA Reference Manual 21.12.2014
RACORS
Table of contents
(I O YT YT TP 4
N 1 1 o Yo U o3 o] o R 4
1.2 FEAUIE SUMMAIY ...ttt e et e e et e e e e e e e e e e ee b e e e e eesa e e eennaaaaeees 4
1.3 Scope of thiS MANUALcooeviiiei e 4
A V(O @)Y =T Y Y 5
3 INtErface DELaAIlS. 7
G 20 N 1 11 (8 Lo 1[0 o N T =Y (o o T 7
G T BT 1 = AN o] ol =11 TSP 9
TG I [1= ¢ (U] o PP PPPPPTTT 10
K I = o o 12
B RSB i 14
4 Instruction EXecution TiMING.........oieiiiiiiiriiiieeeiis e e e e e e ea e e ene 15
4.1 Effective EXECULION TIMES ...ccuuiiiii it e e e et e e e e eaas 15
S 7= | I o T 140 1 1 16
G T o Yo o I - T o - 17
4.4 Software Controlled Branch Speculationcccooiiiiiiiiiiiiiiiiien 17
5 CompPatibDilityuuieieii e 18
T S 01 1= | (=T 18
T2 o = 10 111Y7= (= 18
G T B LT o] F= Tot =10 0 1= | A o] 1o 1 18

3 Property of RACORS GmbH Rev. 0.9

l@’ sf20bl IMA Reference Manud 21.12.2014
RACORS

1 Overview

1.1 Introduction

The sf20 family of 16-bit microprocessors is targeted at embedded control applications that have high
performance requirements and are satisfied with a direct addressable data space of 64kBytes. With 20-bit
instruction coding excellent code efficiency is achieved for a fixed length architecture with 16 general
purpose registers. The sf20 family is very well suited for FPGAs where 20-bit wide memories can be built
efficiently.

The sf20family defines two ISAs (Instruction Set Architectures), a base (b) ISA for general purpose control &
computing and a (d) DSP ISA extension for small 16-bit DSP applications. This manual is the IMA
(Implementation Architecture) reference of the sf20bl, the (l) light implementation of the sf20 (b) base ISA.

1.2 Feature Summary

The following list summarizes the sf20bl's main features

* Focus on performance and moderate core size

e 20-bit wide instruction interface and 16-bit wide data interface

* Register file with 3/2 read/write ports

« Decoupled unit for instruction fetch and flow instruction execution

* Branch Speculation

* Loop cache, zero cycles loop branch from 2" interation

« Separate execution pipelines for computation and load/store instructions

« Single cycle effective execution of all computation instructions

e Single cycle effective execution of all load/store instructions except load/store multiple

< Barrel shifter for single cycle effective execution of all shift instructions

< Average IPC (Instructions Per Cycle) of ~0.8 for typical code sequences

e 2 X 20-bit instruction pre-fetch buffer

« Fully synchronous design, all flip-flops are triggered with the rising edge of the clock input
e Clock rates up to 120MHz on low end FPGAs

e Clock rates >300MHz with deep sub-micron std-cell generic and low-power technologies

1.3 Scope of this manual

This sf20bl IMA reference manual contains the following detailed descriptions:

« |/O Overview, overview of interfaces and 1/O signals

* Interface Details, detailed I/O signal descriptions and interface timing

e Instruction Execution Timing, effective execution time of instructions, data dependencies and stall
conditions

« Compatibility, hardware and software compatibility, drop in replacement options

ISA specific details such as programming model and instruction set are not part of this IMA reference

manual. This information can be found in the base (b) ISA (Instruction Set Architecture) reference manual.

4 Property of RACORS GmbH Rev. 0.9

(@’ sf20bl IMA Reference Manud

RACORS

21.12.2014

2 1/O Overview

sf20bl
<1 A[15: 0] DA[15: 0] |—
| . -] FT DJg 15: 0] b—>
”SF”UtCEO” «~—iFns DBS[1: 0] —» Data
etc 11 19: 0] DVE|L—» Access
—| | RDY DI [15: 0] je——
DRDY [«——
— I RQ
Interrupts { —{I RN[3: (] DBGI [19: 0] |e—
<«—]| ACK STRQ|e+——
INJI je— Debug
Reset — RST DBGJ 15: 0]
STPD|——>
Clock —CLK
Signal Direction | Width Description
| A[15: 0] Output 16 Instruction Address
| FT Output 1 Instruction Fetch
I FNS Output 1 Instruction Fetch Non Sequential
11[19:0] Input 20 Instruction In
| RDY Input 1 Instruction Ready
I RQ Input 1 Interrupt Request
I RN[3: 0] Input 4 Interrupt Number
I ACK Output 1 Interrupt Acknowledge
RST Input 1 Reset
CLK Input 1 Clock
DA[15: 0] Output 16 | Data Address
DJ 15: 0] Output 16 Data Out
DBS[1: 0] Output Data Byte Strobes
DVWE Output Data Write Enable
DI [15: 0] Input 16 | Dataln
DRDY Input 1 Data Ready
DBG [19: 0] Input 20 Debug In
STRQ Input Stop Request
I NJI Input Inject Instruction
DBGJ 15: 0] Output 16 Debug Out
STPD Output 1 Stopped

Clocking

The sf20bl is a fully synchronous design. All flip flops are triggered with the rising edge of the CLK input. All
output changes occur after the rising edge of CLK. All inputs are sampled with the rising edge of CLK.

Property of RACORS GmbH

Rev. 0.9

(Q’ sf20bl IMA Reference Manud 21.12.2014
RACORS

Control signals asserted state

All control signals are active high. The asserted state is ‘1’ and the de-asserted state is ‘0. The following
signals are affected: | FT, | FNS, | RDY, | RQ, | ACK, RST, DBS[1: 0] , DWE, DRDY, STRQ, | NJI , STPD.

Debug Interface
If the debug interface is not used inputs STRQ, | NJI and DBA [19: 0] should be connected to ground.

6 Property of RACORS GmbH Rev. 0.9

l@’ sf20bl IMA Reference Manud 21.12.2014
RACORS

3 Interface Detalils

3.1 Instruction Fetch

Signals
I Al 15: 0] Instruction Address (output); When | FT is asserted | A[15: 0] is the address of the 20-
bit instruction word to fetch. When | FT is de-asserted | A[15: 0] is don't care.
I FT Instruction Fetch (output); | FT is the main control signal of the instruction fetch interface.

When | FT is asserted outputs | Al 15: 0] and | FNS are valid. When | FT is de-asserted
these outputs are don't care.

I FNS Instruction Fetch Non Sequential (output); When | FT is asserted | FNS indicates if the
fetch is sequential (1 A[15: 0] = address of the preceding fetch + 1) or not (any address
due to a change in program flow). When | FT is de-asserted | FNS is don't care.

I'1]19:0] Instruction In (input); When | RDY is asserted | | [19: 0] must be a valid instruction word.
When | RDY is de-asserted | |1 [19: 0] is ignored.
| RDY Instruction Ready (input); | RDY is the acknowledge handshake signal following | FT

instruction fetch requests. | RDY must be asserted only as a response to an | FT request.
For zero wait state instruction fetches | RDY must be asserted in the cycle following an

| FT request. Wait states are inserted by delaying the assertion of | RDY by the required
#of clock cycles.

General Rules

The sf20bl instruction fetch timing is designed for direct connection of synchronous memories. The following
rules apply:
* Based on a handshake with | FT as request and | RDY as acknowledge
e For zero wait states fetches | 1 [19: 0] must be provided and | RDY must be asserted in the
next cycle following an | FT request.
« If11]219: 0] is not ready in the next cycle following | FT an arbitrary number of wait cycles can
be inserted by delaying the assertion of | RDY until I | [19: 0] is ready.
e | FT asserted with | FNS de-asserted indicates sequential fetches. The address | A[15: 0] is
the address of the preceding fetch + 1.
« | FT and | FNS both asserted indicate non-sequential fetches. | Al 15: 0] can have any value
with no relation to the preceding fetch. A preceding fetch not yet completed is aborted. The next
| RDY and related | I [19: 0] are interpreted as response to the non-sequential fetch.

Sequential Fetches

The figure below shows sequential instruction fetches in application mode with | FNS de-asserted. There are
gaps with no instruction fetches in cycles 1, 5 and 7. Although the sf20bl pipeline architecture is designed for
one instruction per clock throughput instruction fetching gaps can occur as a result of pipeline stalls or
execution of multi-cycle instructions, e.g. load/store multiple registers instructions. The processor fetches
sequential instructions only when there is space available in its pre-fetch buffers. The pre-fetch buffer
concept makes sure that the processor never discards and re-reads sequential instruction words
independent of instruction execution times and pipeline stalls.

The fetches in cycles 2, 3, 4, and 6 are done with zero wait states. Instruction words i0, i1, i2 and i3 read
from addresses a0, al, a2 and a3 are provided in the next cycle following the fetch and | RDY is asserted.
Fetching of instruction words i4 and i5 from addresses a4 and a5 in cycles 8 and 9 is done with 1 and 2 wait
states respectively. Fetching of i6 from a6 is done with zero wait states again.

7 Property of RACORS GmbH Rev. 0.9

(Q’ sf20bl IMA Reference Manud 21.12.2014
RACORS

cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14
ac MU
| AL 15: 0] aOXa—_l)@XXX)@)(a5 a6

| FT /__ B

=1 1

| ENS
11[19: 0] LX) is)@x
| RDY \

Sequential instruction fetches with and without wait states

The fetches with wait states show an important behavior of the sf20bl’s pipelined instruction interface. With
no pending fetch (waiting for | RDY of the preceding fetch) | FT is asserted with | A[15: 0] and | FNS valid
for only one cycle. The fetch from a4 in cycle 8 of the diagram illustrates the behavior. In cycle 9 the next
fetch from a5 is driven on the interface. Because the fetch from a4 is not acknowledged yet in cycle 9 the
fetch from a5 remains stable on the interface. This means that bus logic that inserts wait states, e.g. to let
another client access the instruction memory must latch the instruction address and control signals. E.g. if in
the example shown below the bus controller grants access to the instruction memory to another client in
cycle 8 and then reads from a4 in cycle 9 to have i4 ready in cycle 10 the address a4 and corresponding
control signals must be latched in registers because they are not available anymore at the interface in cycle
9.

Non Sequential Fetches

Non sequential instruction fetches occur as a result of program flow changes (jump, branch, return or
interrupt). The processor flushes the instruction pre-fetch buffer and does not wait for | RDY of a pending
fetch. If | RDY is asserted in the same cycle the corresponding instruction word | | [19: 0] is ignored. A
pending instruction fetch that has not been acknowledged yet when a non-sequential fetch occurs is aborted.
This means that the first | RDY following a cycle with | FNS asserted is always interpreted as acknowledge of
the non-sequential fetch.

The next figure shows some example non-sequential fetch timings. The first example is in the middle of a
fetch sequence with no wait states. In cycle 4 | FNS indicates a non-sequential fetch from a2. Instruction
word i1 from the fetch in cycle 3 is discarded. The second example shows a case where a pending fetch is
aborted. The non-sequential fetch from a5 is started in cycle 8. Due to wait states the preceding fetch from
a4 is not completed yet. The instruction bus logic aborts this fetch and reads directly from a5. Instruction
word i5 is delivered (in the example with one wait state) in cycle 10.

In systems with no instruction fetch wait states, e.g. with a synchronous instruction memory directly
connected output | FNS can be ignored. In systems with wait states e.g. with an instruction cache or with
debug access to the instruction memory | FNS must be used to abort pending fetches.

8 Property of RACORS GmbH Rev. 0.9

(Q’ sf20bl IMA Reference Manud 21.12.2014

RACORS

ax AnnUUUTuY
A0 PR RENEE

I FT

I FNS

11[19: 0] | oXi 1Xi 2)1 3X){X BT

| RDY

Non sequential instruction fetches

3.2 Data Access

Signals
DA[15: 0]

DQ[15: 0]

DI [15: 0]

DBS[1: 0]

DRDY

General Rules

Data Address (output); when DBS[1: 0] is asserted (!=0) DA[15: 0] is the byte address
of the data access. When DBS[1: 0] is de-asserted (==0) DA[15: 0] is don't care.

Data Out (output); for write accesses (DBS[1: 0] !=0 and DVIE asserted) DJ] 7: 0]
provides the low byte data if DBS[0] is asserted and DJ 15: 8] provides the high byte
data if DBS[1] is asserted; when DBS[0] or DVIE are de-asserted D 7: 0] is don't care;
when DBS[1] or DVIE are de-asserted D] 15: 8] is don't care

Data In (input); when DRDY is asserted as response to a read access low byte input data
is expected at DI [7: 0] if DBS[0] was asserted and high byte data is expected at

DI [15: 8] if DBS[1] was asserted; data at DI [15: 0] is ignored when DRDY is de-
asserted and when for a read access DBS[0] was de-asserted (high byte read, DJ 7: 0]
ignored) or DBS[1] was de-asserted (low-byte read, DJ 15: 8] ignored)

Byte Strobes (output); DBS[1: 0] is the main control signal of the data access interface.
When DBS[1: 0] is asserted (!=0) outputs DA[15: 0] and DWE are valid. With D\\E
asserted DJ 15: 0] provides the low and/or high byte data. When DBS[1: 0] is de-
asserted these outputs are don’t care. DBS[1: 0] also indicates if a data access is a low-
byte only access (DBS[0] asserted, DBS[1] de-asserted), a high-byte only access
(DBS[0] de-asserted, DBS[1] asserted) or a 16-bit access (DBS[0] and DBS[1] both
asserted)

Data Write Enable (output); When DSB| 1: 0] is asserted (!1=0) DVE indicates if the data
access is a read (DWE=0) or write (D\\E=1); When DSBJ 1: 0] is de-asserted (==0) DVE is
don't care

Data Ready (input); DRDY is the acknowledge handshake signal following DBS[1: 0] =
0 data access requests. DRDY must be asserted only as a response to a DBS[1: 0] =0
request. For zero wait state data accesses DRDY must be asserted in the cycle following
a DBS[1: 0] request. Wait states are inserted by delaying the assertion of DRDY by the
required #of clock cycles.

As with the instruction interface the sf20bl data interface is designed for direct connection of synchronous
memories. The following rules apply:
« Based on a handshake with DBS[1: 0] as request and DRDY as acknowledge
e For zero wait access DRDY must be asserted in the next cycle following a DBS[1: 0] request;
for read accesses data must be provided at DI [15: 0] in that cycle.

e If an access can't be serviced with zero wait states an arbitrary number of wait cycles can be
inserted by delaying the assertion of DRDY.

Property of RACORS GmbH Rev. 0.9

(Q’ sf20bl IMA Reference Manud 21.12.2014
RACORS

cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

aK Sy dyyuyuy
DA[31: 0] a0)a1Xa2)a3X))(Xa4 a6X@7X_ a8 XaoXi
DBS[0]
DBS] 1] /[
e .
DI[7: 0] dod1] a7Y0asX
DI [15: 8] d1Y(d2)(Y a6

|

B

D] 7: 0] d4@: ds
DJ 15: 8] a3)o4 ds
DRDY

Data access timing

Timing

The diagram above shows the sf20bl data access timing. Cycles 2 to 8 are zero wait state accesses of
different types (size, read/write). Cycles 11 to 18 are data accesses with and without wait states and show
an effect that are important to keep in mind when designing data bus logic for the sf20bl. As with the
instruction fetch interface with no pending transaction output signals are driven for only one cycle. E.g. the 8-
bit read from a6 in cycle 11 is completed with one wait state in cycle 13, but the data bus output signals are
de-asserted in cycle 12 (before the transaction is completed). Another exampl is the 8-bit read from address
a7 in cycle 13. The processor then starts a 16-bit write to a8 in cycle 14. Because the read from cycle 13 is
not completed yet the output signals (in this case DA[15: 0] , DBS[1: 0] and DJ 15: 0]) are extended until
the preceding access is completed in cycle 16. In systems with data access wait states the bus logic must
latch the output signals to be able to perform the access later when these signals are no longer valid.

3.3 Interrupts

Signals
I RQ Interrupt Request (input); | RQasserted signals an interrupt request with number
I RN[3: 0] to the processor
I RN[3: 0] Interrupt Number (input); when | RQis asserted | RN[3: 0] is the number of the
requested interrupt; when | RQis de-asserted | RN[3: 0] is ignored
I ACK Interrupt Acknowledge (output); | ACK is asserted for one cycle when the processor has

latched | RN[3: 0] and starts interrupt execution.

The interrupt concept of the sf20bl is designed for maximum performance. When a new interrupt request is
acknowledged the processor does not flush the pipeline. Fetching of the interrupt vector from the data
address space is done one the fly. As soon as the interrupt vector has been received instruction fetching is
diverted to the interrupt start address. In ideal cases with no bus wait states and dependency stalls the only
execution time overhead is the execution of the rt i r instruction at the end of the interrupt service routine.

10 Property of RACORS GmbH Rev. 0.9

(Q’ sf20bl IMA Reference Manud 21.12.2014
RACORS

General Rules

« Interrupts are acknowledged and executed only if enabled (see ISA reference manual)

e The interrupt number | RN[3: 0] may be changed from cycle to cycle at any time also while
I RQis asserted. When | ACK is asserted the | RN 3: 0] of the preceding cycle has been
latched and the corresponding service routine will be executed.

e Simple interrupt controllers with no request queuing can ignore the | ACK signal

Timing

The following diagram is an example interrupt timing of a sf20bl system. Interrupt processing affects also
signals of the instruction fetch and data access interfaces. To keep the diagram simple and clear only
sections that are relevant for interrupt processing are shown for each signal and all instruction and data
accesses are completed with zero wait states.

The sequence starts in cycle 2 with the assertion of | RQand interrupt number Ij on | RN[3: 0] . In most
cases if the processor is not already executing another interrupt | ACK is asserted in the next cycle following
I RQ. In the example | ACK is asserted later in cycle 5 to demonstrate that | RN[3: 0] is allowed to change
while | RQis asserted. | ACK asserted in cycle 5 indicates that the | RN[3: 0] value Ik of cycle 4 has been
latched inside the processor and is the interrupt number that will be processed. Output | FNS is not shown in
cycles 1 to 6 because it is not relevant if the last instruction fetches before an interrupt is started are
sequential or non-sequential.

cycle 8 9 10 11 12 13 14

ak JUyvuuuuuyyrye
X

I RQ

| RN[3: 0] lj Nk

| ACK _
DA[15: 0] :)@)(:
DBS] 1: 0] XX
DVE

DI [15: 0] :EX:
[

DRDY /L
| A[15: 0] :@@ng
| FT

| FNS yawa
11[19: 0] XoXia)i2X

| RDY

Interrupt Timing

In the cycle following the | ACK pulse a 16-bit data read (DBS[1: 0] = 3, DWE = 0) from address ai fetches
the interrupt vector (start address).

With no wait states the data access is completed in cycle 7 with DRDY asserted and the instruction vector iv
available at DI [15: 0] . Three cycles later in cycle 10 fetching of instructions of the interrupt service routine
starts. The first fetch from a0 (a0 = iv) is non-sequential and | FNS is asserted.

11 Property of RACORS GmbH Rev. 0.9

l@’ sf20bl IMA Reference Manud 21.12.2014
RACORS

3.4 Debug

Signals

DBA [19: 0] Debug In (input); this port is used to inject instructions into the processor and to provide
input data for the nf dp (move from debug port) and r spc (restore PC) instructions; when
I NJI is asserted DBG [19: 0] is interpreted as 20-bit opcode of the instruction to be
injected; when a nf dp or r spc instruction is injected source data must be provided at
DBA [15: 0] from the cycle following the assertion of | NJI .

STRQ Stop Request (input); the debug module asserts this signal to bring the processor into the
debug state. The processor stops fetching new instructions and flushes its pipeline
(executes all pending instructions and instructions in the pre-fetch buffer). As long as
STRQremains asserted the processor is held in the debug state; when STRQis released
the processor resumes normal operation.

I NJI Inject Instruction (input); when the processor is in the stopped state (STPD asserted) the
debug module asserts | NJI for one clock cycle to inject and execute individual
instructions; in the cycle where | NJI is asserted the opcode of the injected instruction
must be provided at DBA [19: 0] ; when the processor is not in the stopped state | NJ|
is ignored.

DBGJ 15: 0] Debug Out (output); when in the stopped state a nt dp (move to debug port) or svpc
(save PC) instruction is injected and executed destination data is provided at
DBGJ 15: 0] .

STPD Stopped (output); STPD asserted indicates that the processor is in the stopped state. The
processor enters the stopped state after flushing its pipeline either when STRQis asserted
by the debug module or when a st op instruction is executed.

General Rules

e To use the sf20bl debug features a separate debug module is required that connects to the
processor’s debug interface and the debug Host PC. If debug functionality is not required the
input signals of the debug port DBA [19: 0], STRQand | NJI should be tied to GND.

« Injecting and executing instructions via the debug port is possible only when the processor is in
the stopped state indicated by the STPD output signal.

e The stopped state is entered from normal operation either by asserting the STRQinput or by
executing a st op instruction.

e Toresume normal operation when the stopped state has been entered by STRQassertion STRQ
must be de-asserted.

e Toresume normal operation when the stopped state has been entered by executing a st op
instruction STRQmust be asserted and then de-asserted.

« When data is input via DBG [19: 0] , the data value must be driven on DBA [15: 0], bits
DBd [19: 16] are ignored.

Timing

The first diagram following shows the interface timing at the beginning and end of the stopped state. The
signals of the debug and instruction fetch interfaces are shown. In cycle 2 STRQis asserted. Starting with the
next cycle the processor stops fetching new instructions. Pending instructions and instructions in the pre-
fetch buffer are executed until the pipeline is completely empty. When the pipeline is empty (6-10 cycles with
no wait states) the STPD output is asserted indicating that the stopped state has been reached.

The stopped state can also be entered by executing a st op instruction during normal operation. When a

st op instruction is executed remaining instructions in the pre-fetch buffer are discarded and the processor
asserts the STPD output and enters the stopped state when the execution pipeline has been flushed.

In the diagram STRQis de-asserted again in cycle 7 only 2 cycles after the stopped state has been entered.
Normally this would not make much sense but the purpose of this diagram is to illustrate the timing only at
the beginning and end of the stopped state.

In the next cycle after STRQhas been de-asserted the processor starts fetching instructions again. One cycle
later in cycle 9 the STPD output is de-asserted indicating that the processor has resumed normal operation.

12 Property of RACORS GmbH Rev. 0.9

(Q’ sf20bl IMA Reference Manual 21.12.2014
RACORS
cycle 1 2 3 4 5 6 7 8 9 10 11
aLK Juuuy Juuuduuy
STRQ
I NJI
STPD B
1A 1500 X X X000 XX XXX
| FT -
| FNS X
nrteo) XXX 1 XXX
| RDY \
Entering and leaving the stopped state

The second diagram shows the timing of instruction injection and data I/O via the debug port while the
processor is in the stopped state. The STRQsignal is not shown because it is not relevant if the stopped state
has been entered due to STRQassertion or after the execution of a st op instruction. Regarding interface
timing there are three types of instruction injection:
1. Injection with data input from DGBI [15: 0] ; only the dedicated debug instructions nf dp and r spc
take a source operand from the debug port
2. Injection with data output to DGBJ 15: 0] ; only the dedicated debug instructions nt dp and svpc
output a destination operand to the debug port
3. Injection with no data 1/O; all other instructions are of this type
The injection and execution behavior is common to all three types. The debug module asserts | NJI for one
cycle and drives the opcode of the instruction at DBA [19: 0] . Three cycles later the processor de-asserts
STPD which indicates the execution of the injected instruction. STPD is asserted again when execution has
finished and the pipeline is completely empty. The number of cycles STPDis de-asserted depends on the
instruction. For some flow instructions like SVPC or RSPC STPD is de-asserted for only one cycle. For most
computation instructions it is 2 or 3 cycles. For load/store instructions with zero wait states data access it is
at least 4 cycles. Data access wait states add to the STPD de-asserted time. The debug module must wait for
STPD being de-asserted and asserted again before it can inject the next instruction.

A type 1 example starts in cycle 2 where opcode i0 is injected. In the following cycle when | NJI is de-
asserted the source operand dO is driven at DBA [15: 0] . It must be kept stable until STPD is re-asserted.

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

vy yuyuuyy

cycle 1 2

CLK JUUL

STPD

DBG [19: 0] X dc i1 i 2X3000C)

I NJI [\

DBG] 15: 0] X d1

Instruction injection and execution

A type 2 example starts in cycle 8 where opcode il is injected. When STPD is re-asserted in cycle 13 the
destination operand d1 is available at DBGJ 15: 0] . The example shows the behavior of an nt dp

13 Property of RACORS GmbH Rev. 0.9

"y
Q sf20bl IMA Reference Manud 21.12.2014

RACORS

instruction. The second type 2 instruction svpc has different timing. STPD is de-asserted for only one cycle
and the destination operand appears at DBGJ 15: 0] already in that cycle. The debug module should read
the destination operands of type 2 instructions when STPD has been re-asserted. DBGJ 15: 0] is always
valid then and remains stable until the next type 2 instruction is injected.

A type 3 example starts in cycle 14 where opcode i2 is injected. STPD is de-asserted for three cycles which
is a typical value for computation instructions.

3.5 Reset

Signals
RST Reset (input); this is a synchronous reset; when RST is asserted the processor is reset
with the next rising edge of CLK.

General Rules

« RST can be asserted at any time. The processor does not wait for any pending interface transactions
or instructions.
« RST needs to be asserted for only one active edge of CLK to fully reset the processor.

e Timing

cycle 1 2 3 4 5 6 7 9 10

oLk Jydyyyuuuy
| RN[3: 0] a0[15: 12] XX

| Al 15: 0] XXX a0 at)(a2)(_

| FT

| FNS X
DBS[0]

DBS[1]

DWE

I ACK

STPD

Reset assertion and release

The diagram shows the RST assert and release timing. Only signals that are directly affected are shown.
Output signals not shown are either undefined or keep their state. Beside RST the only input signal
relevant for resetis | RN 3: 0] .

In cycle 2 RST is asserted. In the following cycle (3) instruction fetching stops, | FT and | FNS are de-
asserted. One cycle later (4) all control outputs of the processor are de-asserted. | A[15: 0] takes the
value of the reset start address a0: | A[15: 12] =1 RN[3: 0] and | Al 11: 0] = 0. This state remains
unchanged as long as RST remains asserted.

In cycle 6 RST is de-asserted. | RN 3: 0] must continue to provide the upper 4 bits of the reset start
address for the following 2 cycles. In cycle 8 instruction fetching starts from a0. | RN[3: 0] can take any
value from this point.

14 Property of RACORS GmbH Rev. 0.9

(@’ sf20bl IMA Reference Manud

RACORS

21.12.2014

4 Instruction Execution Timing

4.1 Effective Execution Times

The following table provides effective execution times for all sf20bl instructions except for the dedicated
debug instructions mt dp, nf dp, svpc, r spc and st op which are not for use in normal program code
sequences.

The numbers provided in the Cycles column are best case numbers assuming no stalls caused by operand
dependencies or data access wait states (load/store instructions). The Stalls column contains abbreviations

of stall conditions that are further explained in the “Stall Conditions” section later in this chapter.

Instructions are grouped by addressing modes and common execution time properties. Instructions with
multiple addressing modes may appear in different non-consecutive places.

Instructions Addressing Mode | Cycles Stalls Comment(s)
nove Cl0s, Rd 1 - -
nmvsr Cl0s, Rd 1 D1 R8 is source register
ntsr C10, SRd 1 - -
addt subf addh
m cu andb iorb xorb By, RO 1 D1 i
conp Cl0s, Rs1 1 D1 -
nove negt absl inv
clzr sxbt sxsh Rs, Rd 1 D1 -
adcf sbcf
cpcf Rs 1 D1 -
ntsr Rs, SRd 1 D1 -
nf sr SRs, Rd 1 D1 -
btst btcl bttg BTl 4, Rs1, Rd 1 D1 -
btts BTl 4, Rs1 1 D1 -
addt subf addc subc
mult m hu nlhs D1
andb iorb xorb RsO, Rs1, Rd
btst btcl bttg 1)
D1, D2
shlz shlf shru shrs SHCA. RsL. Rd D1
conp cnpc RsO, Rs1 1 D1 -
Rs, DAllg
Rs, (DOBs, An)
Rs, (An) + D1 data access wait states
bt st s (A 1 o e
Rs, (An)*
Rs, (Rx, An) D1, D2 n = #of register in RGS
RGS, (An) +
RGS, - (An) n D1
DAl1ls, Rd -)
Data access wait states
(DOBs, An) , Rd add to the effective
| dbt | dsh (An) +, Rd 1 execution time
-(An), Rd b1
(An) *, Rd n = #of registers in RGS

15

Property of RACORS GmbH

Rev. 0.9

(0’ sf20bl IMA Reference Manud 21.12.2014
RACORS
(Rx, An), Rd D1, D2
(An) +, RGS
n D1
-(An), RGS
stie clie sciersie |inplied 1 - -
j psr | Al6 2 - -
junp jpsr implied (TA) 2 D3 TA dependency
rtsr D4 SAd d
. i npl i ed) ependency
rtir - -
bral | Ol4g 2 - -
2 branch taken
brlc I Ol0g, S 1 D5 branch not taken
0 loop cache active
2 b h tak
brxx (conditional) | O10g D6 ranch taken
1 branch not taken

4.2 Stall Conditions

Extra cycles add to best case execution times if stall conditions caused by operand dependencies occur
during instruction execution. Instructions have to wait if one or more of their source or destination operands
are scheduled to be updated by a preceding instruction that has not finished execution yet. These conditions
are instruction and addressing mode specific. Six conditions exist named D1 to D6. Affected
instruction/addressing-mode combinations have the relevant conditions listed in the Stalls column of the
execution times table.

The following paragraphs are more detailed descriptions of individual stall conditions with hints how they can
be avoided.

Computation Latency

With the sf20bl pipeline structure register destination operands of computation instructions are updated only
one cycle after a directly following instruction reads its source operands. If the following instruction has the
same register as source operand this instruction would have to be stalled by one cycle to wait until the
source operand is ready. For most cases a forwarding mechanism is implemented that uses the ALU output
as source directly and bypasses the register file to avoid stalls. Exception is the D2 stall condition.

D1 (Source operand pending update)

The D1 stall occurs if instructions use the destination register of a directly preceding load from memory
instruction as source operand. Load from memory instructions update their destination register two cycles
after an immediately following instruction reads its source operands. As with destination operands of
computation instruction there is a forwarding mechanism that bypasses the register file and uses the load
from memory destination operand as source one cycle before it is written to the register file. But because of
two cycles latencies there is still a one-cycles stall if an instruction uses the destination register of a directly
preceding load from memory instruction as source operand.

In many cases such stalls can be avoided by instruction re-ordering so that there is at least one other
instructions between the load from memory and the instruction that uses the load destination as source.

D2 (Computation destination not forwarded)

As described under Computation Latency a forwarding mechanism bypasses the register file to avoid stalls
if instructions try to read the destination register of a directly preceding computation instruction as source
operand. But there are some exceptions where forwarding is not done because it would create critical timing
paths and decrease the processor's maximum clock rate. The following types of register source operands
are affected and cause a one-cycle stall if the register is the destination operand of the directly preceding
instruction:

« Indirect shift counts of shift instructions
* Indirect bit index of bit manipulation instructions

16 Property of RACORS GmbH Rev. 0.9

l@’ sf20bl IMA Reference Manud 21.12.2014
RACORS

* Index of load/store instructions with indirect + index addressing mode

To avoid D2 stalls instructions must be re-ordered such that the instruction that generates the register
destination operand is not the directly preceding instruction.

D3 (TA pending update)

In principle this is the same as D1 but for register TA (Target Address) and only for the j unp and j psr
instructions with the implied addressing mode that use TA as source operand. There is no forwarding when
TA is used as indirect jump address. A preceding instruction that updates TA with a latency > the cycle
distance to the j unp/j psr with TA as source causes stall cycles. This is the case for load instructions with
TA as destination operand and a cycle distance < 3 and also for directly preceding nove instructions with TA
as destination operand.

D4 (rt sr with SA pending update)

This is similar to D3 but for register SA and only for the r t sr instruction that uses SA as source operand.
There is no forwarding when SA is used as return address. A preceding instruction that updates SA with a
latency > the cycle distance to the rt sr causes stall cycles. This is the case for load instructions with SA as
destination operand and with a cycle distance < 3 and also for directly preceding nt sr instructions with SA
as destination operand.

D5 (br | ¢ with LC pending update)

Again this is similar to D3-D4 but for register LC (Loop Counter) and for br | ¢ instructions which use LC as
source operand. There is no forwarding when LC is used as source operand of loop counter branches. A
preceding instruction that updates LC with a latency > the cycle distance to the br | ¢ causes stall cycles.
This is the case for directly preceding nt sr instructions with LC as destination operand.

D6 (br xx with unresolved speculation)

The sf20bl implements a speculation scheme for conditional branches. Conditional branch instructions do
not wait until pending CC updates of preceding instructions are completed. However a stall condition occurs
if a new conditional branch is decoded and the speculation of a preceding branch is not yet resolved. In this
case the new branch has to wait until all CC update operations of instructions that have been issued before
the preceding branch are completed. D6 stalls typically occur with instruction sequences where two or more
conditional branches are placed close together.

4.3 Loop Cache

The sf20bl implements a single entry loop cache to accelerate the performance of simple loops. When a

br | ¢ (loop counter branch) instruction with backward branch direction is executed and the loop cache is not
active yet the processor latches start-address, end-address and the opcode of the first instruction of the loop
in internal registers.

From the second iteration on the last instruction (loop branch) and the first instruction of the loop are not
fetched from instruction memory to eliminate the 2-cycle latency that the non-sequential instruction fetch of
the loop branch would cause. Instead the loop branch is implicitly executed and the opcode of the first
instruction is retrieved from the register where it has been stored when the cache became active. As a result
the effective execution time of the loop branch is zero cycles.

If beside the implicit loop branch any other non-sequential instruction execution is encountered the loop
cache is de-activated immediately. E.g. if a conditional branch inside the loop is taken the cache is de-
activated and the next execution of the loop branch is done normally as in the first iteration but with this
normal br | ¢ execution the cache is activated again. If in the next iteration the conditional branch is not
taken the cache concept will take effect and the next loop back branch will be done with zero cycles
effective.

4.4 Software Controlled Branch Speculation

sf20 opcodes of conditional branch instructions contain a flag (S = speculation), that can be used to improve
the performance of conditional branch execution. The sf20bl implementation uses the S flag to decide
whether a conditional branch is taken or not in cases where the branch condition has not been evaluated yet
by the time the branch instruction is decoded. If for a conditional branch instruction the preferred case
(branch taken or not) is known at compile time or when an assembler routine is written, setting the S flag to
the preferred case improves performance.

17 Property of RACORS GmbH Rev. 0.9

"y
Q sf20bl IMA Reference Manud 21.12.2014

RACORS
5 Compatibility
5.1 Software

The sf20bl is fully compatible with the sf20 (b) (base) ISA.

5.2 Hardware

The sf20bl interface signals and timing are the same as those of the sf20bu and sf20dl. These three
processors can replace each other without changing any of the surrounding hardware.

5.3 Replacement Options

sf20bl and sf20bu are software compatible and can replace each other regarding both hardware and
software.

The sf20dI can replace sf20bu and sf20bl regarding both hardware and software because it supports the
sf20 (b) (base) ISA.

18 Property of RACORS GmbH Rev. 0.9

