3

RACORS

sf32

32-bit microprocessors

Quick Reference Guide
V1.0
February 2014

Author: Martin Raubuch

Property of RACORS GmbH
info@racors.com

N—g” Qick Reference Guide V1.0
'@’ sf32

RACORS

Introduction

The sf32 family of 32-bit microprocessors is targeted at applications where high performance and small core sizes
are most important. Fixed length 32-bit instruction coding enables low decoding complexity which results in high
clock rates and small core foot prints. Multiple ISAs are available to address control & computing as well as DSP
applications with optimized solutions.

» sf32b (base ISA) for general purpose control & computing, 32-bit data and instr. address spaces

+ sf32d (dsp ISA) base ISA with 32-bit DSP extension for audio and 32-bit DSP applications

sf32b (base ISA)

The sf32b is a 32-bit microprocessor architecture for embedded control & computing applications. Main focus of
the ISA definition is on high clock rates and small core implementations.

The sf32b is a load/store architectures. All operands of computation instructions are either constants or contained
in registers. Load/store instructions are used to transfer operands between registers and memory.

The sf32b defines a generic and complete instruction set for efficient high level language compiler
implementations.

sf32b features

» Harvard architecture with separate instruction and data buses

» 4GBytes instruction address space

« 4GBytes data address space

« Fixed length 32-bit instruction coding

« 16 interrupts with programmable start addresses

« 24 x 32-bit general purpose registers and 7 special registers

+ System (protected) and application operation modes

» Native support for 8-bit, 16-bit and 32-bit signed and unsigned integer data types

+ Higher precision integer and float data types supported by multi-instruction sequences

* Rich set of load/store addressing modes, including indirect with index and update addressing
+ Little endian byte ordering

+ Load/store multiple instructions for code efficient copying and function prologue/epilogue
+ Bit manipulation & test instructions: set, clear, toggle & test

+ 32*32 multiply with either 32-bit high word or 32-bit low word results

+ Instructions for endianess conversion

* Flexible debug interface to connect application specific debug modules

sf32d (DSP ISA)

The sf32d is an extension of the sf32b base ISA and is fully backward compatible with the sf32b. Main target are
32-bit DSP and specifically audio applications. The DSP extension adds only a few special registers but no general
purpose registers to the programming model of the sf32b ISA. Main additions are addressing modes with memory
source operands and special add/subtract instructions that improve the performance of audio and general DSP
algorithms. With the same pipeline architecture and computation resources implementations of sf32d processors
are only slightly larger than base ISA implementations.

The sf32d deviates from the puristic load/store architecture of the sf32b. Some performance critical extension
instructions have one source operand in memory.

The instructions with additional addressing modes and the additional, special add/subtract instructions can't be
used easily from high level languages. The targeted use model suggests hand optimized assembler routines for
performance critical DSP functions using the special addressing modes and instructions. The less performance
critical higher layers and control code is written in C and compiled to the sf32b base ISA instruction set.

sf32d extension features
» Multiply-high and MAC (Multiply & Accumulate) instructions with one source operand in memory
« Optional 1-bit or 2-bit left-shift before accumulation
« Multiple indirect addressing modes for memory source operands with offset, index and auto-update
« Add/sub instructions with preceding left-shift of one source operand
+ Clip to signed 16-bit, clip to signed 31-bit and clip to unsigned byte instructions
« 32-bit Iterative divide instruction
» Dual entries accumulation extension cache (patented) for sum-of-products calculation with 64-bit precision

2 Property of RACORS GmbH 17.02.2014

"

Quick Reference Guide V1.0

sf32b

RACORS
Base ISA Registers
Register Bits 31[30] 29[28] 27] 26] 25] 24[23] 22] 21] 20] 19] 18] 17] 16[15 14] 13[12]11]10[9[8[7[6 [5[4[3] 2[1] 0
Rn | An [Name Physical Registers
0 RO RO
1 R1 R1
2 R2 R2
3 R3 8 x 32-bit registers R3
4 R4 for data operands R4
5 R5 R5
6 R6 R6
7 R7 R7
8 8 R8 R8
9 9 R9 R9
10 10 RA RA
11 11 RB RB
12 12 RC RC
13 13 RD RD
14 14 RE " . RE
S5 [re for data operanci o1 RE
20 g RE indirect addresses RE
17 [1 | RQ RQ
18 2 RU RU
19 3 RV RV
20 4 RW RW
21 5 RX RX
22 6 RY RY
23 7 RZ RZ
24 LC [Loop Counter LC
25 CC |Condition Codes [N[Z]O]C
26 CS [Control & Status VTP | [Is]iE]IR
27 EP |Extension ISA Parameters
28 TA [Target Address TA
29 SA |Subroutine (return) Address SA
30 IA__|Interrupt (return) Address 1A
31 ID_[Core ID [REV. T IMA] ISA [FML=4
Register Fields
© Carry flag
o Overflow flag
ee Y4 Zero flag
N Negative flag
IR Interrupt, 0: not in an interrupt, 1: interrupt processing
cs IE Interrupt Enable, O: interrupts disabled, 1: interrupts enabled
IS Interrupt (enable) Shadow, used to save/restore IE when scie/rsie instructions are executed
IVTP Interrupt Vectors Table Pointer, defines the 26 MSBs [31:6] of the interrupt vector table start address in the data address space
FML Core Family, 1: ecol6, 2: eco32, 4: sf32, 5: sf16
D ISA ISA: 1: b = base, 2: d = dsp extension
IMA Implementation Architeture, 1: | = light, 4: u = ultralight
REV Revision, starting with 1
3 Property of RACORS GmbH 17.02.2014

(“’ Quick Reference Guide V1.0 sf32b
RAC’DRS
Load/Store instructions
Operand Symbols Operand Addressing
DA16s |16-bit absolut data address, signed, 0x00000000-0x00007FFF and OxFFFF8000-0xFFFFFFFF
DO125 |12-bit data address offset, signed, -2048 to 2047
AU125 |12-bit address update, signed, -2048 to 2047 ala alo
Rs register Rn (R0-RZ,LC,CC,CS,ID,TA,SA,IA,ID) used as source operand - 5 5 a & 5 5 a
Rd register Rn (R0O-RZ,LC,CC,CS,ID,TA,SA, IA), used as destination operand zZ E’ g 5 % Z (=% % %
RX register Rn (R0-RZ,LC,CC,CS,ID,TA,SA,IA), used as index operand _(c),- == _‘é fi <5> Al 2
Ru register Rn (R0-RZ,LC,CC,CS,ID,TA,SA,IA), used as update operand x| o 2|3 & SRMEIEIE = ’g
An registers An (R8-RZ) used as indirect address 2l e|e|lz|<|o|c| S| 2=
CND condition, the instruction is executed only if the condition is true, 15 conditions b 8 E DC:- i jé SRS 8 8
RGS [register selection, any selection of RO-RB, RP-RV, LC, TA, SA sgla|g||z|<|E|g|e|e|e|d| e
Mnemo Description Addressing Modes
Idbz load byte (8-bit) and zero-extend x| * i s
Idbs load byte (8-bit) and sign-extend x| * i s
stbt store byte (8-bit) i e I I e I
ldsz load short (16-bit) and zero extend i s B e e I
Idss load short (16-bit) and sign-extend i B I I e I
stsh store short (16-bit) i s B e I
Idlg load long (32-bit) i e I I e I
stlg store long (32-hit) i s B e I
eda (32-bit effective data address for sf32 and 16-bit effective data address for sfr32) generation (Load/Store Addressing Modes)
DA16s CND 16-bit signed direct address eda = DA16g
(DO125,ANn),CND indirect with 12-bit signed offset eda = An + DO124
(An,AU125)*,CND indirect with 12-bit signed update eda = An, An += AU124
(An,Ru)*,CND indirect with indirect update eda = An, An += Ru
(Rx,An),CND indirect with scaled index eda = An + size*Rx, size = 1 (byte), 2 (short), 4 (long)
(An)+ indirect with post-increment eda = An, An += size, size = 1 (byte), 2 (short), 4 (long)
-(An) indirect with pre-decrement An -= size, eda = An, size = 1 (byte), 2 (short), 4 (long), An = eda
4 Property of RACORS GmbH 17.02.2014

~

Quick Reference Guide V1.0

sf32b

RACORS
Flow Instructions
Operand Options Oper. Addr

Implied no operands or operands are implicitly defined
10165 16-bit instruction address offset in bytes (32-bit word granularity), -32768 to 32764 - n
S speculation, T (true) or F (false) % é) é) 3
1A29, 29-bit absolut instruction address in 32-bit word granularity, 0x00000000 to Ox1FFFFFFC E|O|O %’

Mnemo Description Addr. Mode

jump, jump-to-subroutine, return
jump jump (with the implied addressing mode the target address is in register TA) * *
jpsr jump to subroutine (with the implied addressing mode the target address is in register TA) * *
rtsr return from subroutine *
rtir return from interrupt *
conditional branches

mnemo condition CND specified as logical equation of C = CC.C, O = CC.0,Z=CC.Zand N = CC.N
brnc branch if no carry CND =~C *
brcr branch if carry CND =C *
brno branch if no overflow CND =~O *
brof branch if overflow CND =0 *
brnz branch if non zero CND =~Z *
brzr branch if zero CND=Z *
brps branch if positive CND =~N *
brng branch if negative CND =N *
brls branch if lower or same CND=C|Z *
brhi branch if higher CND=~C&~Z *
brlo branch if lower CND = (N & ~O) | (N & O) *
brge branch if greater or equal CND =(N&O) | (~N & ~O) *
brle branch if lower or equal CND=Z|(N&~0O)| (=N & O) *
brgt branch if greater CND=~Z & ((N&O) | (=N & ~0)) *
bric branch if loop counter is unequal zero LCT-=1,CND=LCT =0 *

other
stie set interrupt enable, sets IE bitin CS *
clie clear interrupt enable, clears IE bitin CS *
rsie restore interrupt enable, transfers IS bit of CS to IE bit of CS *
scie save and clear interrupt enable, transfers IE bit of CS to IS bit of CS, then clears IE *
stop stop, enter stopped (debug) state *
svpc save program counter (write to debug port) *
rspc restore program counter (read from debug port) *
5 Property of RACORS GmbH 17.02.2014

(.a’ Quick Reference Guide V1.0 sf32b
RACORS
Base ISA Arithmetic Computation Instructions
Operand Field Elements Operand Addressing
C12, 12-bit constant (Unsigned) 0 to 4095
C16y 16-bit constant (Unsigned), 0 to 65535 A
C32y 32-bit constant (Unsigned), 0x00000000 to OxFFFF0000, the 16 LSBs are always zero (Z) % %
C16g 16-bit constant (Signed), -32768 to 32767 -Dc.;:‘ Sl g =
Cl7g 17-bit constant (Signed), -65536 to 65535 Jld|d dla | % E’ 3
Rs,Rs0,Rs1 |register Rn, used as source (Rs), source 0 (Rs0) or source 1 (Rs1) operand CleE|e|xe(x] -(c);“ Y S
Rd register Rn, used as destination operand &1:" é’ %D S| S|E|g o
CND condition, the instruction is executed only if the condition is true, 15 conditions olojlojo|o|x|x|x -g
Mnemo Description Addressing Modes O
addt add to L il
addc add with carry, destination = source0 + sourcel + CC.C x| *
addh add to high word @
subf subtract from, source0 from sourcel x| * x| *
subc subtract with carry, destination = sourcel - source0 - CC.C @ x| *
comp compare (subtract source 0 from source 1) x| * *
cmpc compare with carry (subtract source 0 + CC.C from source 1) | @
negt negate *
absl absolute value L
clzr count leading zeros *
mult multiply unsigned, 32*32 -> 64, store low word of result in destination @
mihu multiply high unsigned, 32*32 -> 64, store high word of result in destination *
mlhs multiply high signed, 32*32 -> 64, store high word of result in destination @
micu multiply constant, 16*32 -> 48, store lower 32 bits of result in destination *
mlcs multiply constant, 16*32 -> 48, store lower 32 bits of result in destination @
6 Property of RACORS GmbH 17.02.2014

(:’ Quick Reference Guide V1.0 sf32b
RAC’DRS
Base ISA Miscellaneous Instructions
Operand Options
Implied no operands or operands are implicitly defined =
BTI5, 5-bit bit index (Unsigned), 0 to 31 a %
SHC5,, 5-bit shift count (Unsigned), 0 to 31 8 5 2 =
C16, 16-bit constant (Unsigned), O to 65535 S (2 = g < 2 o -
Cl7s 17-bit constant (Signed), -65536 to 65535 211415392 e
Rs,RsO,Rs1 |[register Rn, used as source (Rs), source 0 (Rs0) or source 1 (Rs1) operand r:g 0:5 Lg E’._ DU’.), E % E f_f
- - - n| D 2 2 o
Rd register Rn, used as destination operand g E (:é NS |2 Quf)_ SlolalE
CND condition, the instruction is executed only if the condition is true, 15 conditions ojo|o|ojojajaejejr|r]s
Mnemo Description O
Logic
andb logical and bit wise, also calculates parity of the result * * *
iorb logical inclusive or bit wise * *
xorb logical exclusive or bit wise * *
invt invert *
Move
move move, zero-extend source operands to 32 bits * *
mfdp move from debug port, transfers the debug port input value to the destination operand *
mtdp move to debug port, transfers the source operand to the core's debug port *
Shift
shlz shift left with zero fill * *
shlf shift left with feedback (from MSB) * *
shru shift right unsigned * *
shrs shift right signed * *
Bit Manipulation
btst bit set * *
btcl bit clear * *
bttg bit toggle * *
btts bit test, does not update the destination register * * *
Endianess
ibos invert byte order short, swaps bytes 0 and 1, bits[31:16] remain unchanged *
ibol invert byte order long, changes byte order from 3:2:1:0 to 0:1:2:3 *
7 Property of RACORS GmbH 17.02.2014

Quick Reference Guide V1.0

sfa2d

RACORS
DSP Extension ISA Registers
Register Bits 31]30] 29[28] 27] 26] 25] 24[23] 22] 21 20] 19] 18] 17] 16[15] 14] 13[12]11]10[9[8[7[6 [5[4[3] 2] 1] 0
Rn [An [AHN]Dn [Name Physical Registers Rn
[0] RO RO
[1] R1 R1
2 R2 R2
(3] R3 8 x 32-bit registers R3
I 4| R4 for data operands R4
5] 5| R5 R5
[6 | 6| R6 R6
7 7| R7 R7
8|80 R8 R8
91911 R9 R9
10(10| 2 RA RA
11111 3 RB RB
12(12| 4 RC RC
13|13 5 RD RD
14114| 6 RE " . RE
] B for data operanci o RE
Collin ONERE indirect addresses RE
17] 1 1| RQ RQ
18| 2 2| RU RU
19| 3 3| RV RV
20(4 RW RW
21| 5 RX RX
22| 6 RY RY
23| 7 RZ RZ
24 LC [Loop Counter LC
[25] CC _|[Condition Codes [N]Zz]O]cC
26 CS _[Control & Status IVTP [[Is]iE]IR
[27] EP _|[Extension ISA Parameters [LU] ADRN1 [ADRNO | RND
(28] TA [Target Address TA
[29] SA |Subroutine (return) Address SA
E IA__|Interrupt (return) Address
31 ID_[Core ID [REV. T IMA] ISA [TYP=4
Register Fields
© Carry flag
o Overflow flag
ce Y4 Zero flag
N Negative flag
IR Interrupt, 0: not in an interrupt, 1: interrupt processing
cs IE Interrupt Enable, O: interrupts disabled, 1: interrupts enabled
IS Interrupt (enable) Shadow, used to save/restore IE when scie/rsie instructions are executed
IVTP Interrupt Vectors Table Pointer, defines the 26 MSBs [31:6] of the interrupt vector table start address in the data address space
RND Round, 0: no round, 1-19: adds 1 << (28+RND) to the product of minsd, mlhsd, msnsd, mshsd, m2nsd, m2hsd instructions
Ep ADRNO Accumulation Extension Cache entry 0 Destination Register Number
ADRN1 Accumulation Extension Cache entry 1 Destination Register Number
LU Accumulation Extension Cache Least Recently Used, 0: entry 0, 1: entry 1
FML Core Family, 1: ecol6, 2: eco32, 4: sf32, 5: sf16
D ISA ISA: 1: b = base, 2: d = dsp extension
IMA Implementation Architeture, 1: | = light, 4: u = ultralight
REV Revision, starting with 1
8 Property of RACORS GmbH 17.02.2014

~

Quick Reference Guide V1.0

sf32d

RACORS
DSP Extension ISA instructions
Operand Symbols Operand Addressing
DO12g 12-hit data address offset, signed, -2048 to 2047
AU124 12-hit address update, signed, -2048 to 2047
Rs,Rs0,Rs1 [register Rn used as source (Rs), source 0 (Rs0) or source 1 (Rs1) operand s l|B oo
Rd register Rn used as destination operand a a a— = a a— -
Dd,Db register Dn (R4-R7,RP-RV), used as destination (Dd) or both source and destination (Db) operand 5 E gl2|8 E gla|Aa
Es,Ed register En (EO, E1, E2 or E3), used as source (Es) or destination (Ed) operand nlg|o = ra @ g a2 ra ® ;
Rx register Rn (R0-RZ,LC,CC,CS,ID,TA,SA,IA), used as index operand 5 5— 2— <|q EF— g 2— <|o EF— g
Ru register Rn (RO-RZ,LC,CC,CS,ID,TA,SA,IA), used as update operand === e g‘:’ 2 ;5; ’5; 2 g‘:’ 2 ;5; ’5;
AHn registers AHn (R8-RF) used as indirect address " '-'UJ) o QU:). sleglolc|cl2lglols|S| =
CND condition, the instruction is executed only if the condition is true, 15 conditions cle|d|d|2|d|e|L|Z|E[|e|L ||
Mnemo Description Addressing Modes
subsd subtract with 1-bit left-shift of source operand 1 *
addsd add with 1-bit left-shift of source operand 1 *
clssd clip to signed short (low boundary 0x8000, high boundary Ox7FFF) *
clsmd clip to signed maximum (low boundary 0xC0000000, high boundary Ox3FFFFFFF) *
clubd clip to unsigned byte (low boundary 0, high boundary 0xFF) *
idivd iterative divide, RX/RY -> EO (quotient), E1 (remainder), RS = iteration count *
mtexd move to extension register *
mfexd move from extension register *
subfd subtract from i I I
addtd add to i I I
minsa multiply & negate signed, 32*32 -> 64, store high word of result in destination i I e
mlhsa multiply signed, 32*32 -> 64, store high word of result in destination i I e
macsa multiply signed & accumulate, 32*32 -> 64, add high word of result to destination i I I
macsa multiply signed & subtract, 32*32 -> 64, subtract high word of result from destination i I e
msnsa multiply, left-shift & negate signed, 32*32 -> 64, store high word of result in destination i I e
mshsa multiply & left-shift signed, 32*32 -> 64, store high word of result in destination i I e
msasa multiply, left-shift signed & accumulate, 32*32 -> 64, add high word of result to destination i I
msssa multiply, left-shift signed & subtract, 32*32 -> 64, subtract high word of result from destination i I e e
m2nsa multiply, 2-hit left-shift & negate signed, 32*32 -> 64, store high word of result in destination i I e
m2hsa multiply & 2-hit left-shift signed, 32*32 -> 64, store high word of result in destination i I e
m2asa multiply, 2-hit left-shift signed & accumulate, 32*32 -> 64, add high word of result to destination i I
m2ssa multiply, 2-hit left-shift signed & subtract, 32*32 -> 64, subtract high word of result from destination i I e e
9 Property of RACORS GmbH 17.02.2014

