

sf32

32-bit microprocessors

Quick Reference Guide V1.0 February 2014

Author: Martin Raubuch

Property of RACORS GmbH info@racors.com

Introduction

The sf32 family of 32-bit microprocessors is targeted at applications where high performance and small core sizes are most important. Fixed length 32-bit instruction coding enables low decoding complexity which results in high clock rates and small core foot prints. Multiple ISAs are available to address control & computing as well as DSP applications with optimized solutions.

- sf32b (base ISA) for general purpose control & computing, 32-bit data and instr. address spaces
- sf32d (dsp ISA) base ISA with 32-bit DSP extension for audio and 32-bit DSP applications

sf32b (base ISA)

The sf32b is a 32-bit microprocessor architecture for embedded control & computing applications. Main focus of the ISA definition is on high clock rates and small core implementations.

The sf32b is a load/store architectures. All operands of computation instructions are either constants or contained in registers. Load/store instructions are used to transfer operands between registers and memory.

The sf32b defines a generic and complete instruction set for efficient high level language compiler implementations.

sf32b features

- Harvard architecture with separate instruction and data buses
- 4GBytes instruction address space
- · 4GBytes data address space
- Fixed length 32-bit instruction coding
- 16 interrupts with programmable start addresses
- 24 x 32-bit general purpose registers and 7 special registers
- System (protected) and application operation modes
- Native support for 8-bit, 16-bit and 32-bit signed and unsigned integer data types
- Higher precision integer and float data types supported by multi-instruction sequences
- · Rich set of load/store addressing modes, including indirect with index and update addressing
- Little endian byte ordering
- Load/store multiple instructions for code efficient copying and function prologue/epilogue
- Bit manipulation & test instructions: set, clear, toggle & test
- 32*32 multiply with either 32-bit high word or 32-bit low word results
- · Instructions for endianess conversion
- Flexible debug interface to connect application specific debug modules

sf32d (DSP ISA)

The sf32d is an extension of the sf32b base ISA and is fully backward compatible with the sf32b. Main target are 32-bit DSP and specifically audio applications. The DSP extension adds only a few special registers but no general purpose registers to the programming model of the sf32b ISA. Main additions are addressing modes with memory source operands and special add/subtract instructions that improve the performance of audio and general DSP algorithms. With the same pipeline architecture and computation resources implementations of sf32d processors are only slightly larger than base ISA implementations.

The sf32d deviates from the puristic load/store architecture of the sf32b. Some performance critical extension instructions have one source operand in memory.

The instructions with additional addressing modes and the additional, special add/subtract instructions can't be used easily from high level languages. The targeted use model suggests hand optimized assembler routines for performance critical DSP functions using the special addressing modes and instructions. The less performance critical higher layers and control code is written in C and compiled to the sf32b base ISA instruction set.

sf32d extension features

- Multiply-high and MAC (Multiply & Accumulate) instructions with one source operand in memory
- · Optional 1-bit or 2-bit left-shift before accumulation
- Multiple indirect addressing modes for memory source operands with offset, index and auto-update
- Add/sub instructions with preceding left-shift of one source operand
- Clip to signed 16-bit, clip to signed 31-bit and clip to unsigned byte instructions
- 32-bit Iterative divide instruction
- Dual entries accumulation extension cache (patented) for sum-of-products calculation with 64-bit precision

Base ISA Registers

CS Control & Status IVTP	
R1	
R2	
R3	
R4	
R5	
R6	
R7	
R	
9 9 R9 10 10 RA 11 11 RB 12 12 RC 13 13 RD 14 14 RE 15 15 RF 16 0 RP 17 1 18 2 19 3 20 4 21 5 22 6 23 7 24 25 26 27 28 29 10 10 RA RA RA RB RB RB RB RC RE RF RF RF RF RF RF RF RF RF RF RF RF RF RF RF RF RF	
10	
11	
12	
13 13 RD	
14	
15	
15	
Total Control & Status Indirect address Total Control & Status Indirect & Stat	
17	
19 3 RV RV RW RW RW RY RY RY RY RY	
RW	
21 5 RX RX RX 22 6 RY RY 23 7 RZ RZ 24 LC Loop Counter LC 25 CC Condition Codes 26 CS Control & Status IVTP 27 EP Extension ISA Parameters 28 TA Target Address TA 29 SA Subroutine (return) Address SA 30 SA Subroutine (return) Address SA 30 RX RX RX RX RY RZ RZ	
RY	
RZ	
C	
CC Condition Codes	
CS Control & Status IVTP	1171010
27 EP Extension ISA Parameters 28 TA Target Address TA 29 SA Subroutine (return) Address SA	N Z O C
28 TA Target Address TA 29 SA Subroutine (return) Address SA	ISTELIK
SA Subroutine (return) Address SA	
30 IA Interrupt (return) Address IA	
31 ID Core ID REV IMA ISA	FML = 4
Register Fields	TIVIL - 4
C Carry flag	
O Overflow flog	
CC Z Zero flag	
N Negative flag	
IR Interrupt, 0: not in an interrupt, 1: interrupt processing	
IF Intervent Englis Orinterwents dischlar 4 intervents analysis	
CS IS Interrupt (enable) Shadow, used to save/restore IE when scie/rsie instructions are executed	
IVTP Interrupt Vectors Table Pointer, defines the 26 MSBs [31:6] of the interrupt vector table start address in the data address space	
FML Core Family, 1: eco16, 2: eco32, 4: sf32, 5: sf16	
ISA ISA: 1: h = hasa 2: d = den extension	
ID IMA Implementation Architeture, 1: I = light, 4: u = ultralight	
REV Revision, starting with 1	

Quick Reference Guide V1.0

sf32b

Load/Store instructions

		Operand Symbols						Op	era	nd A	Addr	essi	ng			
DA16 _S	16-bit absolut data															
DO12 _S	12-bit data address															
AU12 _S	12-bit address upda	1		۵							ا ۵					
Rs	register Rn (R0-RZ	1_	(DO12 _S ,An),Rd,CND	(An,AU12 _S)*,Rd,CND						Rs,(DO12 _s ,An),CND	Rs,(An,AU12 _S)*,CND					
Rd	register Rn (R0-RZ	(DA16 _S),Rd,CND	d,C	ζd,	(An,Ru)*,Rd,CND	CND			Rs,(DA16 _S),CND	<u>(</u>	*,(Rs,(An,Ru)*,CND	CND			
Rx	register Rn (R0-RZ),C	,'R	J,*(d,C	$\overline{\Omega}$),C	Ĭ,Ā	12 _s	, ,				
Ru	register Rn (R0-RZ	ŊĂ,	Å,	12 _s	*, \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	S,	GS	38	10s	12 _s	ΔV	(J)	\ <u>P</u>	취용		
An		registers An (R8-RZ) used as indirect address									χĺ	δ	Υ,	<u>ا</u> ج	Rs,(Rx,An),	RGS,(An)+ RGS,-(An)
CND		uction is executed only if the condition is		A1	Įδ	'n,	'n,F	(Rx,An),Rd,	(An)+,RGS	-(An),RGS	3,([3,([3,(3,(S,(F	S S
RGS	register selection, a	any selection of R0-RB, RP-RV, LC, TA, Description	SA	9		₹	₹		_	-				æ	άľ	ř ř
Mnemo							ddre *		ng N	1ode	es					
Idbz	load byte (8-bit) and			*	*	*	*	*	*	*						
ldbs	load byte (8-bit) and	d sign-extend		*	*	*	*	*	*	*	*	*	*	*	*	* *
stbt	store byte (8-bit)			*	*	*	*	*	*	*	*	*	^		*	* *
ldsz	load short (16-bit) a			*	*	*	*	*	*	*						
Idss	load short (16-bit) a	and sign-extend									*	*	*	*	*	* *
stsh	store short (16-bit)			*	*	*	*	*	*	*						
ldlg stlg	load long (32-bit) store long (32-bit)										*	*	*	*	*	* *
Sug		effective data address for sf32 and 16-hi	t effective data address for sfr32) genera	ation	<u>(0</u>	ad/9	Store	Δ	Idre	eeir	na M	ode	c)			
DA16 _{s.} C		16-bit signed direct address	eda = DA16 _S	atioi i	(LO	au, c	Jiore	<i>></i> / (C	Juic	3311	ig ivi	ouc	<i>3)</i>			
(DO12 _S ,		indirect with 12-bit signed offset	eda = An + DO12 _S													
-	2 _S)*,CND	indirect with 12-bit signed update	eda = An, An += AU12 _s													
(An,Ru)*	,CND	indirect with indirect update eda = An, An += Ru														
(Rx,An),		indirect with scaled index	eda = An + size*Rx, size = 1 (byte), 2 (s	shor	t), 4	(lor	ng)									
(An)+		indirect with post-increment	eda = An, An += size, size = 1 (byte), 2	(sho	ort),	4 (lo	ong)									
-(An)		indirect with pre-decrement	An -= size, eda = An, size = 1 (byte), 2 ((sho	rt),	4 (lc	ng),	An	= e	da						

Flow Instructions

	Operand Options		0	per.	Ad	dr.	
Implied	no operands or operands are implicitly defined						
IO16 _S	16-bit instruction address offset in bytes (32-bit word gran	nularity), -32768 to 32764	٦		S		
S	speculation, T (true) or F (false)		lie	es	6 _S ,	90	
IA29 _U	29-bit absolut instruction address in 32-bit word granulari	Implied	1016 _s	1016 _s ,S	IA29∪		
Mnemo Description							
	jump, jump-to-subroutin	e, return					
jump	jump (with the implied addressing mode the target addres	ss is in register TA)	*			*	
jpsr	jump to subroutine (with the implied addressing mode the	target address is in register TA)	*			*	
rtsr	return from subroutine		*				
rtir	return from interrupt		*				
	conditional branch	nes					
mnemo	condition CND specified as logical equation of C		CC	.N			
brnc	branch if no carry	CND = ~C			*		
brcr	branch if carry	CND = C			*		
brno	branch if no overflow	CND = ~O			*		
brof	branch if overflow	CND = O			*		
brnz	branch if non zero	CND = ~Z			*		
brzr	branch if zero	CND = Z			*		
brps	branch if positive	CND = ~N			*		
brng	branch if negative	CND = N			*		
brls	branch if lower or same	CND = C Z			*		
brhi	branch if higher	CND = ~C & ~Z			*		
brlo	branch if lower	CND = (N & ~O) (~N & O)			*		
brge	branch if greater or equal	CND = (N & O) (~N & ~O)			*		
brle	branch if lower or equal	CND = Z (N & ~O) (~N & O)			*		
brgt	branch if greater	CND = ~Z & ((N & O) (~N & ~O))			*		
brlc	branch if loop counter is unequal zero	LCT -= 1, CND = LCT != 0		*			
	other						
stie	set interrupt enable, sets IE bit in CS		*				
clie							
rsie	clear interrupt enable, clears IE bit in CS restore interrupt enable, transfers IS bit of CS to IE bit of CS *						
scie	save and clear interrupt enable, transfers IE bit of CS to I	S bit of CS, then clears IE					
stop	stop, enter stopped (debug) state		*				
svpc	save program counter (write to debug port)		*				
rspc	restore program counter (read from debug port)		*				

Base ISA Arithmetic Computation Instructions

	Operand Field Elements		Op	era	nd A	ddr	ess	ing				
C12 _U	12-bit constant (Unsigned) 0 to 4095											
C16 _U	16-bit constant (Unsigned), 0 to 65535											
C32 _U	32-bit constant (Unsigned), 0x00000000 to 0xFFFF0000, the 16 LSBs are always zero	N.							9	ond. Code Updated		
C16 _S	16-bit constant (Signed), -32768 to 32767	Rd,C	Rd	þ	р				Rs0,Rs1,Rd,CND	pda		
C17 _S	17-bit constant (Signed), -65536 to 65535	s1,R	7, R,	C32 _U ,Rs1,Rd	1,Rd	-		Rs,Rd,CND	Ä,			
Rs,Rs0,Rs1	register Rn, used as source (Rs), source 0 (Rs0) or source 1 (Rs1) operand	,Rs	C16 _U ,Rs1	,Rs	C16 _S ,Rs1,	C17 _s ,Rs1	Rs0,Rs1	d,C	2	po		
Rd	register Rn, used as destination operand	C12 _U ,R	00	32∪	16 _S	17 _s	30,F	Ä,	30,F	0		
CND	condition, the instruction is executed only if the condition is true, 15 conditions	Ċ	Ċ	\ddot{c}	Ć	Ċ	Rs	æ	Ϋ́	ou C		
Mnemo	Description		Addressing Mode					Modes				
addt	add to	*	*						*	*		
addc	add with carry, destination = source0 + source1 + CC.C	*							*	*		
addh	add to high word			*								
subf	subtract from, source0 from source1	*	*						*	*		
subc	subtract with carry, destination = source1 - source0 - CC.C	*							*	*		
comp	compare (subtract source 0 from source 1)					*	*			*		
cmpc	compare with carry (subtract source 0 + CC.C from source 1)					*	*			*		
negt	negate							*				
absl	absolute value							*				
clzr	count leading zeros							*				
mult	multiply unsigned, 32*32 -> 64, store low word of result in destination								*			
mlhu	multiply high unsigned, 32*32 -> 64, store high word of result in destination								*			
mlhs	multiply high signed, 32*32 -> 64, store high word of result in destination								*			
mlcu	multiply constant, 16*32 -> 48, store lower 32 bits of result in destination		*									
mlcs	multiply constant, 16*32 -> 48, store lower 32 bits of result in destination				*							

sf32b

Base ISA Miscellaneous Instructions

	Operand Options												
Implied	no operands or operands are implicitly defined												
BTI5 _U	5-bit bit index (Unsigned), 0 to 31										atec		
SHC5 _U	5-bit shift count (Unsigned), 0 to 31		Z	S					위		Updated		
C16 _U	16-bit constant (Unsigned), 0 to 65535		BTI5 _U , Rs, Rd, CND	SHC5 _U ,Rs,Rd,CND	9	þ	\supseteq		Rs0,Rs1,Rd,CND		e U		
C17 _S	17-bit constant (Signed), -65536 to 65535	BTI5∪,Rs,CND	s,R	Rs,I	C17 _S ,Rd,CND	C16 _U ,Rs1,Rd	Rs0,Rs1,CND	Rs,Rd,CND	Α̈́		Code		
Rs,Rs0,Rs1	register Rn, used as source (Rs), source 0 (Rs0) or source 1 (Rs1) operand	Α̈́,	ď,	J.)	Rc,	,Rs	ls	d,C	SS1				
Rd	register Rn, used as destination operand	15	15	<u>~</u>	7	θ0	,0,F	, R	9,6	_	igi e		
CND	condition, the instruction is executed only if the condition is true, 15 conditions	BT	BT	송	$^{\circ}$	C	Rs	Rs	RS	Rd	Condition		
Mnemo	Description												
Logic													
andb	logical and bit wise, also calculates parity of the result					*			*		*		
iorb	logical inclusive or bit wise					*			*				
xorb	logical exclusive or bit wise					*			*				
invt	invert							*					
Move													
move	move, zero-extend source operands to 32 bits				*			*					
mfdp	move from debug port, transfers the debug port input value to the destination operand									*			
mtdp	move to debug port, transfers the source operand to the core's debug port										*		
	Shift		,		,								
shlz	shift left with zero fill			*					*				
shlf	shift left with feedback (from MSB)			*					*				
shru	shift right unsigned			*					*				
shrs	shift right signed			*					*				
	Bit Manipulation		,		,								
btst	bit set		*						*				
btcl	bit clear		*						*				
bttg	bit toggle		*						*				
btts	bit test, does not update the destination register	*					*				*		
	Endianess												
ibos	invert byte order short, swaps bytes 0 and 1, bits[31:16] remain unchanged							*					
ibol	invert byte order long, changes byte order from 3:2:1:0 to 0:1:2:3							*					

DSP Extension ISA Registers

					Register Bits	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
Rn	An I	AHn	Dn	Name	g	Physical Registers Rn											
0	/ (11	/ U III	D	R0		R0											
1				R1	•	R1											
2				R2		R2											
3				R3	8 x 32-bit registers	R3											
		i	4		for data operands	R3 R4											
4			4	R4	ioi data operands												
5			5	R5		R5 R6											
7			7	R6 R7													
	_	•	/			R7											
8	8	0		R8	•	R8											
9	9	1		R9		R9											
10	10	2		RA	RB RC												
11	11	3		RB													
12	12	4		RC													
13	13	5		RD		RD											
14	14	6		RE	16 x 32-bit registers	RE											
15	15	7		RF	for data operands or	RF											
16	0		0	RP	indirect addresses	RP											
17	1		1	RQ		RQ											
18	2		2	RU		RU											
19	3		3	RV		RV											
20	4			RW		RW											
21	5			RX		RX											
22 23	6			RY		RY											
23	7			RZ		RZ											
24					Loop Counter	LC											
25 26 27					Condition Codes	N Z O C											
26				CS	Control & Status	IVTP IS IE IR											
27					Extension ISA Parameters	LU ADRN1 ADRN0 RND											
28 29					Target Address	TA											
29					Subroutine (return) Address	SA											
30					Interrupt (return) Address	IA											
31				ID	Core ID	REV IMA ISA TYP = 4											
						Register Fields											
			С		Carry flag												
С	_		0		Overflow flag												
	<u> </u>		Z		Zero flag												
			N		Negative flag												
	I		IR		Interrupt, 0: not in an interrupt, 1: inter												
С	9		ΙE		Interrupt Enable, 0: interrupts disabled												
	٥		IS			/e/restore IE when scie/rsie instructions are executed											
			IVT			s the 26 MSBs [31:6] of the interrupt vector table start address in the data address space											
			RN			28+RND) to the product of mlnsd, mlnsd, msnsd, mshsd, m2nsd, m2hsd instructions											
E	ь	P	٩DR	N0	Accumulation Extension Cache entry												
-		P	٩DR	N1	Accumulation Extension Cache entry	Destination Register Number											
			LU		Accumulation Extension Cache Least												
			FM	L	Core Family, 1: eco16, 2: eco32, 4: sf3	32, 5: sf16											
			IS/		ISA: 1: b = base, 2: d = dsp extension												
IE	,		IM	4	Implementation Architeture, 1: I = light	4: u = ultralight											
			RE		Revision, starting with 1												

DSP Extension ISA instructions

Operand Symbols						(Оре	ranc	d Ad	ldres	ssin	g				
DO12 _S	2 _s 12-bit data address offset, signed, -2048 to 2047															
AU12 _S	12-bit address update, signed, -2048 to 2047															
Rs,Rs0,Rs1	register Rn used as source (Rs), source 0 (Rs0) or source 1 (Rs1) operand							_	0					Q		
Rd	register Rn used as destination operand					\circ		ď	ď	_			되 [ੱ]	Ō,		
Dd,Db	register Dn (R4-R7,RP-RV), used as destination (Dd) or both source and destination (Db) operand					Rs0,Rs1,Rd,CND		(DO12 _S ,An),Rs1,Dd	(An,AU12 _S)*,Rs1,Dd	(An,Ru)*,Rs1,Dd	р		(DO12 _S ,An),Rs1,Db	3 S1	g	၉
Es,Ed	register En (E0, E1, E2 or E3), used as source (Es) or destination (Ed) operand					d,C	٦	, R	F,*(s1,	(Rx,An),Rs1,Dd	q	Ä,	*, F,	s1,	(Rx,An),Rs1,Db
Rx	register Rn (R0-RZ,LC,CC,CS,ID,TA,SA,IA), used as index operand				봈	Α,	Ū,	An	2 _s	Ϋ́	Rs	Ο,	An	2 _s	<u>بر</u>	Rs
Ru	register Rn (R0-RZ,LC,CC,CS,ID,TA,SA,IA), used as update operand		_	_	J,C	SS1	SS1	2s,	1	(a)	n),	SS1	2s,	5	<u>(T</u>	<u>(</u> ,
AHn	registers AHn (R8-RF) used as indirect address		Rs,Ed	Es,Rd	Rs,Rd,CND	О, Е	Rs0,Rs1,Dd	6	۸,۲	, R	x,A	Rs0,Rs1,Db	5	Α, Γ	Ä,	Ϋ́
CND	condition, the instruction is executed only if the condition is true, 15 conditions	Rs	Rs	Es	Rs	Rs	Rs	0	₹	₹	(R	Rs	0	(An,AU12 _S)*,Rs1,Db	₹	8
Mnemo	Description						Add	dres	sing	Мо	des					
subsd	subtract with 1-bit left-shift of source operand 1					*										
addsd	add with 1-bit left-shift of source operand 1					*										
clssd	clip to signed short (low boundary 0x8000, high boundary 0x7FFF)				*											
clsmd	clip to signed maximum (low boundary 0xC0000000, high boundary 0x3FFFFFFF)				*											
clubd	clip to unsigned byte (low boundary 0, high boundary 0xFF)				*											
idivd	iterative divide, RX/RY -> E0 (quotient), E1 (remainder), RS = iteration count	*														
mtexd	move to extension register		*													
mfexd	move from extension register			*												
subfd	subtract from							*	*	*	*					
addtd	add to							*	*	*	*					
mlnsa	multiply & negate signed, 32*32 -> 64, store high word of result in destination						*	*	*	*	*					
mlhsa	multiply signed, 32*32 -> 64, store high word of result in destination						*	*	*	*	*					
macsa	multiply signed & accumulate, 32*32 -> 64, add high word of result to destination											*	*	*	*	*
macsa	multiply signed & subtract, 32*32 -> 64, subtract high word of result from destination											*	*	*	*	*
msnsa	multiply, left-shift & negate signed, 32*32 -> 64, store high word of result in destination						*	*	*	*	*					
mshsa	multiply & left-shift signed, 32*32 -> 64, store high word of result in destination						*	*	*	*	*					
msasa	multiply, left-shift signed & accumulate, 32*32 -> 64, add high word of result to destination											*	*	*	*	*
msssa	multiply, left-shift signed & subtract, 32*32 -> 64, subtract high word of result from destination											*	*	*	*	*
m2nsa	multiply, 2-bit left-shift & negate signed, 32*32 -> 64, store high word of result in destination						*	*	*	*	*					
m2hsa	multiply & 2-bit left-shift signed, 32*32 -> 64, store high word of result in destination						*	*	*	*	*					
m2asa	multiply, 2-bit left-shift signed & accumulate, 32*32 -> 64, add high word of result to destination											*	*	*	*	*
m2ssa	multiply, 2-bit left-shift signed & subtract, 32*32 -> 64, subtract high word of result from destination											*	*	*	*	*