~

RACORS

sf32bl

32-bit microprocessor

IMA (Implementation Architecture)
Reference Manual

Revision 0.9
18 March 2014

Author: Martin Raubuch

Property of RACORS GmbH

(Q’ sf32bl IMA Reference Manud

18.03.2014
RACORS
Revision History
Revision | Date
0.9 18Mar2014 | First version
2 Property of RACORS GmbH Rev. 0.9

l@’ sf32bl IMA Reference Manual 18.03.2014
RACORS
Table of contents
(I O YT YT TP 4
N 1 1 o Yo U o3 o] o R 4
1.2 FEAUIE SUMMAIY ...ttt e et e e et e e e e e e e e e e ee b e e e e eesa e e eennaaaaeees 4
1.3 Scope of thiS MANUALcooeviiiei e 4
A V(O @)Y =T Y Y 5
3 INtErface DELaAIlS. 7
G 20 N 1 11 (8 Lo 1[0 o N T =Y (o o T 7
G T BT 1 = AN o] ol =11 TSP 9
TG I [1= ¢ (U] o PP PPPPPTTT 11
K I = o o 13
B RSB i 15
4 Instruction EXecution TiMING.........oieiiiiiiiriiiieeeiis e e e e e e ea e e ene 17
4.1 Effective EXECULION TIMES ...ccuuiiiii it e e e et e e e e eaas 17
S 7= | I o T 140 1 1 18
G T o Yo o I - T o - 19
5 ComPatiDIlity ...cc.uniieiie e 20
T 0 1 11V 1 (T 20
T2 o F= 1o 111V Y £ 20
5.3 Replacement OPLIONSccouuuuiiiiiiieeiieiiite et e e e e e e e e raas 20

3 Property of RACORS GmbH Rev. 0.9

l@’ sf32bl IMA Reference Manud 18.03.2014
RACORS

1 Overview

1.1 Introduction

The sf32 family of 32-bit microprocessors is targeted at general purpose control and computing applications.
With fixed length 32-bit instruction coding the architectural focus is on high clock rates and small core
implementations.

The sf32 family defines two ISAs (Instruction Set Architectures), a base (b) ISA for general purpose control &
computing and a (d) DSP ISA extension for 32-bit DSP applications. This manual is the IMA (Implementation
Architecture) reference of the sf32hl, the (I) light implementation of the sf32 (b) base ISA.

1.2 Feature Summary

The following list summarizes the sf32bl’s main features

* Focus on performance and moderate core size

« 32-bit wide instruction and data interfaces

* Reqgister file with 3/2 read/write ports

« Decoupled unit for instruction fetch and flow instruction execution

e Branch Speculation

e Loop cache, zero cycles loop branch from 2" iteration

e Separate execution pipelines for computation and load/store instructions

« Single cycle effective execution of all computation instructions except multiplies

e Single cycle effective execution of all load/store instructions except load/store multiple

< Barrel shifter for single cycle effective execution of all shift instructions

< Average IPC (Instructions Per Cycle) of ~0.8 for typical code sequences

e 2 x 32-bit instruction pre-fetch buffer

« Fully synchronous design, all flip-flops are triggered with the rising edge of the clock input
e Clock rates up to 110MHz on low end FPGAs

e Clock rates >300MHz with deep sub-micron std-cell generic and low-power technologies

1.3 Scope of this manual

This sf32bl IMA reference manual contains the following detailed descriptions:

e |/O Overview, overview of interfaces and 1/O signals

* Interface Details, detailed I/O signal descriptions and interface timing

« Instruction Execution Timing, effective execution time of instructions, data dependencies and stall
conditions

e Compatibility, hardware and software compatibility, drop in replacement options

ISA specific details such as programming model and instruction set are not part of this IMA reference

manual. This information can be found in the base (b) ISA (Instruction Set Architecture) reference manual.

4 Property of RACORS GmbH Rev. 0.9

()

RACORS

sf32bl IMA Reference Manud

18.03.2014

/O Overview

sf32bl
<«—|{1A129: 0] DA[31: 0] |—»
_ <«—|IFT DJ 31: 0] }—
Instruction <«—{I FNS DBS[3: 0] —
SRR e 47 el e
—={11[31:0] DSM—>
— I RDY DI [31: 0] fe——
— liro DRDY je¢——
Interrupts { —{I R\[3: 0] DBGI [31: 0] |«—
<«—] | ACK STRQje——
Debu
Reset — = DBGO[3|1:'\lc])]I N ’
STPD|——>
Clock —{CLK
Signal Direction | Width Description
I Al 29: 0] Output 30 | Instruction Address
| FT Output Instruction Fetch
I FNS Output Instruction Fetch Non Sequential
| FSM Output 1 Instruction Fetch System Mode
I1[31:0] Input 32 | Instruction In
| RDY Input 1 Instruction Ready
I RQ Input 1 Interrupt Request
I RN[3: 0] Input 4 Interrupt Number
I ACK Output 1 Interrupt Acknowledge
RST Input 1 Reset
CLK Input 1 Clock
DA[31: 0] Output 32 | Data Address
DJ 31: 0] Output 32 | Data Out
DBS[3: 0] Output Data Byte Strobes
DV Output Data Write Enable
DSM Output Data System Mode
DI [31: 0] Input 32 Data In
DRDY Input 1 Data Ready
DBdG [31: 0] Input 32 Debug In
STRQ Input Stop Request
I NJI Input Inject Instruction
DBGJ 31: 0] Output 32 Debug Out
STPD Output 1 Stopped

Clocking

The sf32bl is a fully synchronous design. All flip flops are triggered with the rising edge of the CLK input. All
output changes occur after the rising edge of CLK. All inputs are sampled with the rising edge of CLK.

5

Property of RACORS GmbH

Rev. 0.9

(Q’ sf32bl IMA Reference Manud 18.03.2014
RACORS

Control signals asserted state

All control signals are active high. The asserted state is ‘1’ and the de-asserted state is ‘0. The following
signals are affected: | FT, | FNS, | FSM | RDY, | RQ, | ACK, RST, DBS[3: 0] , DWE, DSM DRDY, STRQ, | NJI ,
STPD.

Debug Interface
If the debug interface is not used inputs STRQ, | NJI and DBA [31: 0] should be connected to ground.

6 Property of RACORS GmbH Rev. 0.9

l@’ sf32bl IMA Reference Manud 18.03.2014

RACORS

3 Interface Detalils

3.1 Instruction Fetch

Signals

I Al 29: 0] Instruction Address (output); When | FT is asserted | A[29: 0] is the address of the 32-

I FT

I FNS

| FSM

bit instruction word to fetch. When | FT is de-asserted | A[29: 0] is don't care. The sf32b
ISA defines a 4 GBytes instruction address space with 32-bit instruction addresses
pointing to byte locations. Instruction addresses must be aligned on 32-bit boundaries
which means the 2 LSBs of instruction byte addresses are always zero. | A[29: 0] isa
32-bit word address and represents bits [31:2] of instruction byte addresses.

Instruction Fetch (output); | FT is the main control signal of the instruction fetch interface.
When | FT is asserted outputs | A[29: 0] , | FNS and | FSMare valid. When | FT is de-
asserted these outputs are don't care.

Instruction Fetch Non Sequential (output); When | FT is asserted | FNS indicates if the
fetch is sequential (1 A] 29: 0] = address of the preceding fetch + 1) or not (any address
due to a change in program flow). When | FT is de-asserted | FNS is don't care.

Instruction Fetch System Mode (output); When | FT is asserted | FSMindicates if the fetch
is from the system mode (I FSM= 1) or application mode (I FSM= 0) address space.
When | FT is de-asserted | FSMis don't care.

I'1]31: 0] Instruction In (input); When | RDY is asserted | | [31: 0] must be a valid instruction word.

I RDY

When | RDY is de-asserted | | [31: 0] is ignored.

Instruction Ready (input); | RDY is the acknowledge handshake signal following | FT
instruction fetch requests. | RDY must be asserted only as a response to an | FT request.
For zero wait state instruction fetches | RDY must be asserted in the cycle following an

| FT request. Wait states are inserted by delaying the assertion of | RDY by the required
#of clock cycles.

General Rules
The sf32bl instruction fetch timing is designed for direct connection of synchronous memories. The following

rules apply:

Based on a handshake with | FT as request and | RDY as acknowledge

For zero wait states fetches | | [31: 0] must be provided and | RDY must be asserted in the
next cycle following an | FT request.

If I 1[31: 0] is not ready in the next cycle following | FT an arbitrary number of wait cycles can
be inserted by delaying the assertion of | RDY until I | [31: 0] is ready.

| FT asserted with | FNS de-asserted indicates sequential fetches. The address | A[29: 0] is
the address of the preceding fetch + 1.

| FT and | FNS both asserted indicate non-sequential fetches. | A[29: 0] can have any value
with no relation to the preceding fetch. A preceding fetch not yet completed is aborted. The next
| RDY and related | | [31: O] are interpreted as response to the non-sequential fetch.

When | FT is asserted | FSMindicates if the fetch is from the system mode address space

(I FSM= 1) or from the application mode address space (I FSM= 0). Bus controllers can use

| FSM to protect system code from execution in the application mode.

| FSMis asserted for all instruction fetches of interrupt routines.

If system mode protection is not required | FSMcan be ignored.

Sequential Fetches

The figure below shows sequential instruction fetches in application mode with | FNS and | FSMde-asserted.
There are gaps with no instruction fetches in cycles 1, 5 and 7. Although the sf32bl pipeline architecture is
designed for one instruction per clock throughput instruction fetching gaps can occur as a result of pipeline
stalls or execution of multi-cycle instructions, e.g. multiply or load/store multiple registers instructions. The
processor fetches sequential instructions only when there is space available in its pre-fetch buffers. The pre-

Property of RACORS GmbH Rev. 0.9

"y
Q sf32bl IMA Reference Manud 18.03.2014

RACORS

fetch buffer concept makes sure that the processor never discards and re-reads sequential instruction words
independent of instruction execution times and pipeline stalls.

The fetches in cycles 2, 3, 4, and 6 are done with zero wait states. Instruction words i0, i1, i2 and i3 read
from addresses a0, al, a2 and a3 are provided in the next cycle following the fetch and | RDY is asserted.
Fetching of instruction words i4 and i5 from addresses a4 and a5 in cycles 8 and 9 is done with 1 and 2 wait
states respectively. Fetching of i6 from a6 is done with zero wait states again.

CLK Uy yyuyyuuyuy
| AL 29: 0] a0)a1Xa2X {1 esXNaeX a5 X a6 XK
| FT /_

| FNS

&)
=

I'1[31: 0] DE®WE i 4 i 5)@)(
| RDY [

Sequential instruction fetches with and without wait states

The fetches with wait states show an important behavior of the sf32bl’s pipelined instruction interface. With
no pending fetch (waiting for | RDY of the preceding fetch) | FT is asserted with | A[29: 0] ,| FNS and | FSM
valid for only one cycle. The fetch from a4 in cycle 8 of the diagram illustrates the behavior. In cycle 9 the
next fetch from a5 is driven on the interface. Because the fetch from a4 is not acknowledged yet in cycle 9
the fetch from a5 remains stable on the interface. This means that bus logic that inserts wait states, e.g. to
let another client access the instruction memory must latch the instruction address and control signals. E.g. if
in the example shown below the bus controller grants access to the instruction memory to another client in
cycle 8 and then reads from a4 in cycle 9 to have i4 ready in cycle 10 the address a4 and corresponding
control signals must be latched in registers because they are not available anymore at the interface in cycle
9.

Non Sequential Fetches

Non sequential instruction fetches occur as a result of program flow changes (jump, branch, return or
interrupt). The processor flushes the instruction pre-fetch buffer and does not wait for | RDY of a preceding
fetch. If | RDY is asserted in the same cycle the corresponding instruction word | | [31: 0] is ignored. A
pending instruction fetch that has not been acknowledged yet when a non-sequential fetch occurs is aborted.
This means that the first | RDY following a cycle with | FNS asserted is always interpreted as acknowledge of
the non-sequential fetch.

The next figure shows some example non-sequential fetch timings. The first example is in the middle of a
fetch sequence with no wait states. In cycle 4 | FNS indicates a non-sequential fetch from a2. Instruction
word i1 from the fetch in cycle 3 is discarded. The second example shows a case where a preceding fetch is
aborted. The non-sequential fetch from a5 is started in cycle 8. Due to wait states the preceding fetch from
a4 is not completed yet. The instruction bus logic aborts this fetch and reads directly from a5. Instruction
word i5 is delivered (in the example with one wait state) in cycle 10.

In systems with no instruction fetch wait states, e.g. with a synchronous instruction memory directly
connected output | FNS can be ignored. In systems with wait states e.g. with an instruction cache or with
debug access to the instruction memory | FNS must be used to abort pending fetches.

| FSMis shown in the two instruction fetch timing diagram only for completeness of the interface signals. For
the timing its state is not directly relevant. It can be viewed as an extra address bit.

8 Property of RACORS GmbH Rev. 0.9

(Q’ sf32bl IMA Reference Manud

RACORS

18.03.2014

cycle 1 2 3

CLK

| Al 15: 0]
| FT

| FNS

| FSM
11]15: 0]

| RDY

Uy

yuy

9 10 11 12

i

Non sequential instruction fetches

3.2 Data Access

Signals
DA[31: 0]

DJd 31: 0]

DI [31: 0]

DBS] 3: 0]

Data Address (output); when DBS[3: 0] is asserted (!=0) DA[31: 0] is the byte address
of the data access. When DBS[3: 0] is de-asserted (==0) DA[31: 0] is don't care.

Data Out (output); for write accesses (DBS[3: 0]

I= 0 and DVE asserted) DJ 31: 0]

provides the data on four byte lanes. Only byte lanes with DBS[n] asserted have valid
data. DBS[0] controls DO 7: 0] , DBS[1] controls DJ 15: 8], DBS[2] controls

DJ 23: 16] and DBS[3] controls DJ 31: 24] . When DVE is de-asserted or when a
DBS[n] is de-asserted the corresponding byte lane within DO 31: 0] is don't care.

Data In (input); when DRDY is asserted as response to a read access input data is
expected at the active byte lanes of DI [31: 0] . Active byte lanes are determined by
DBS[3: 0] in the cycle where the access was requested. DBS[0] controls DI [7: 0] ,
DBS[1] controls DI [15: 8], DBS[2] controls DI [23: 16] and DBS[3] controls

DI [31: 24] . When DRDY is de-asserted DI [31: 0] is ignored.

Byte Strobes (output); DBS[3: 0] is the main control signal of the data access interface.
is asserted (!=0) outputs DA[31: 0] , D\E and DSMare valid. With DWE
asserted DJ 31: 0] provides write data on the DBS[3: 0] selected byte lanes. When
DBS[3: 0] is de-asserted these outputs are don't care. The following table summarizes
the DO 31: 0] and DI [31: 0] byte lane use. Note that for reads the DI [31: 0] byte
lanes are active in the response cycle (DRDY asserted) following a DBS[3: 0] request.

When DBS[3: 0]

Access Type

DBS] 3: 0]

DA[1] | DA[0]

Valid Output

Expected Input

byte (8-bit)

Ox1

0 0

DJ 7: 0]

DI[7:0]

0x2

DJ 15: 8]

DI [15: 8]

0x4

DO 23: 16]

DI [23: 16]

0x8

1
0
1

DJ 31: 24]

DI [31: 24]

short (16-bit)

0x3

don’t

0xC

care

0
1
1
0
1

DJ 15: 0]

DI [15: 0]

DO 31: 16]

DI [31: 16]

long (32-bit)

OxF

don’t care

DJ 31: 0]

DI [31: 0]

Data Write Enable (output); When DSB[3: 0] is asserted (!1=0) DVE indicates if the data
access is a read (DWE=0) or write (D\\E=1); When DSBJ 3: 0] is de-asserted (==0) DVE is

don’t care

Property of RACORS GmbH

Rev. 0.9

l" sf32bl IMA Reference Manual 18.03.2014
RACORS
DSM Data System Mode (output); When DSB[3: 0] is asserted (!1=0) DSMindicates if the data

access is to the system address space (DSM=1) or application address space (DSM=0);
When DSB[3: 0] is de-asserted (==0) DSMis don’t care

DRDY Data Ready (input); DRDY is the acknowledge handshake signal following DBS[3: 0] =
0 data access requests. DRDY must be asserted only as a response to a DBS[3: 0] =0
request. For zero wait state data accesses DRDY must be asserted in the cycle following
a DBS[3: 0] request. Wait states are inserted by delaying the assertion of DRDY by the
required #of clock cycles. For read accesses input data must be provided at the active
byte lanes of DI [31: 0] in the cycle when DRDY is asserted.

General Rules

As with the instruction interface the sf32bl data interface is designed for direct connection of synchronous
memories. The following rules apply:
« Based on a handshake with DBS[3: 0] as request and DRDY as acknowledge
e For zero wait states access DRDY must be asserted in the next cycle following a DBS[3: 0]
request; for read accesses data must be provided at DI [31: 0] in that cycle.
e If an access can't be serviced with zero wait states an arbitrary number of wait cycles can be
inserted by delaying the assertion of DRDY.
« The maximum access rate is one access per cycle.
« To build secure systems the DSMoutput can be used to protect critical system resources from
illegal access by application mode code. If this is not required the DSMoutput can be ignored.
* Read accesses to the interrupt vector table are done with DSMasserted.

Timing

The following diagram shows the sf32bl data access timing. Cycles 2 to 8 are zero wait state accesses of
different types (size, read/write). Cycles 11 to 18 are data accesses with and without wait states and show
an effect that are important to keep in mind when designing data bus logic for the sf32bl. As with the
instruction fetch interface with no pending transaction output signals are driven for only one cycle. E.g. the
16-bit read from a6 in cycle 11 is completed with one wait state in cycle 13, but the data bus output signals
are de-asserted in cycle 12 (before the transaction is completed). Another example is the 8-bit read from
address a7 in cycle 13. The processor then starts a 16-bit write to a8 in cycle 14. Because the read from
cycle 13 is not completed yet the output signals (in this case DA[31: 0] , DBS[1: 0] , DJ 15: 0] and DSM
are extended until the preceding access is completed in cycle 16. In systems with data access wait states
the bus logic must latch the output signals to be able to perform the access later when these signals are no
longer valid.

DSMis shown only for completeness of the interface signals. For data access timing its state is not directly
relevant. As with the instruction fetch interface it can be viewed as an extra address bit.

10 Property of RACORS GmbH Rev. 0.9

(Q’ sf32bl IMA Reference Manud 18.03.2014
RACORS

cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
aK yuyvdvuvuuvyyyuyyyuy
DA[31: 0] 20Xa1Xa2Xa3)(0XeaXas a6X 00728 Xao)(iX
DBS[0]

DBS[1]

DBS] 2] ava

DBS 3] /S __
DvE _/

DSM

DI[7: 0] dlxd—_z d7

DI [15: 8] dl)@

Di [23: 16] doyd1 dé

DI [31: 24] di d6 do)
D 7: 0] d4 d9

DO 15: 8] d4Xds do

DJ 23: 16] d3>(XX>@

DQ| 31: 24] d3>(XX>@

DRDY \

Data access timing

3.3 Interrupts

Signals
I RQ Interrupt Request (input); | RQasserted signals an interrupt request with number
| RN[3: 0] to the processor
I RN[3: 0] Interrupt Number (input); when | RQis asserted | RN[3: 0] is the number of the
requested interrupt; when | RQis de-asserted | RN[3: 0] is ignored
I ACK Interrupt Acknowledge (output); | ACK is asserted for one cycle when the processor has

latched | RN[3: 0] and starts interrupt execution.

The interrupt concept of the sf32bl is designed for maximum performance. When a new interrupt request is
acknowledged the processor does not flush the pipeline. Fetching of the interrupt vector from the data
address space is done one the fly. As soon as the interrupt vector has been received instruction fetching is
diverted to the interrupt start address. In ideal cases with no bus wait states and dependency stalls the only
execution time overhead is the execution of the rt i r instruction at the end of the interrupt service routine.

11 Property of RACORS GmbH Rev. 0.9

(Q’ sf32bl IMA Reference Manud 18.03.2014
RACORS

General Rules

* Interrupts are acknowledged and executed only if enabled (see ISA reference manual)

e The interrupt number | RN[3: 0] may be changed from cycle to cycle at any time also while
I RQis asserted. When | ACK is asserted the | RN 3: 0] of the preceding cycle has been
latched and the corresponding service routine will be executed.

e Simple interrupt controllers with no request queuing can ignore the | ACK signal

Timing

The following diagram is an example interrupt timing of a sf32bl system. Interrupt processing affects also
signals of the instruction fetch and data access interfaces. To keep the diagram simple and clear only
sections that are relevant for interrupt processing are shown for each signal and all instruction and data
accesses are completed with zero wait states.

The sequence starts in cycle 2 with the assertion of | RQand interrupt number Ij on | RN[3: 0] . In most
cases if the processor is not already executing another interrupt | ACK is asserted in the next cycle following
I RQ. In the example | ACK is asserted later in cycle 5 to demonstrate that | RN[3: 0] is allowed to change
while | RQis asserted. | ACK asserted in cycle 5 indicates that the | RN[3: 0] value Ik of cycle 4 has been
latched inside the processor and is the interrupt number that will be processed. Output | FNS is not shown in
cycles 1 to 6 because it is not relevant if the last instructions fetches before an interrupt is started are
sequential or non-sequential. | FSMis de-asserted because if not the processor would already be in an
interrupt routine and the new request would not be acknowledged.

In the cycle following the | ACK pulse a 32-bit data read (DBS[3: 0] = OxF, DAE = 0) from address ai of
the system data address space (DSMasserted) fetches the interrupt vector (start address).

cycle 8 9 10 11 12 13 14

aK Juvudvyuuuuiuuy
X

I RQ

| RN[3: 0] i Xk

| ACK _
DA[31: 0] :)@)(:
DBS| 3: 0] XEX
DSM /N
DVE

DI[31: 0] X
DRDY _/__
| AL 29: 0] XadXazxazX.
| FT
I FNS _/— B
| FSM
11 31: 0] X0 X2

| RDY

Interrupt Timing

One

12 Property of RACORS GmbH Rev. 0.9

"y
Q sf32bl IMA Reference Manud 18.03.2014

RACORS

With no wait states the data access is completed in cycle 7 with DRDY asserted and the instruction vector iv
available at DI [31: 0] . Three cycles later in cycle 10 fetching of instructions of the interrupt service routine
starts. The first fetch from a0 (a0 = iv) is non-sequential and | FNS is asserted. Because the pre-fetch buffers
and execution pipeline are completely empty there are at least three consecutive instruction fetches as
shown in the diagram. All these fetches have | FSMasserted while the processor is in the interrupt service
routine.

3.4 Debug

Signals

DBA [31: 0] Debug In (input); this port is used to inject instructions into the processor and to provide
input data for the nf dp (move from debug port) and r spc (restore PC) instructions; when
I NJI is asserted DBG [31: 0] is interpreted as 32-bit opcode of the instruction to be
injected; when a nf dp or r spc instruction is injected source data must be provided at
DBA [31: 0] from the cycle following the assertion of | NJI .

STRQ Stop Request (input); the debug module asserts this signal to bring the processor into the
debug state. The processor stops fetching new instructions and flushes its pipeline
(executes all pending instructions and instructions in the pre-fetch buffer). As long as
STRQremains asserted the processor is held in the debug state; when STRQis released
the processor resumes normal operation.

I NJI Inject Instruction (input); when the processor is in the stopped state (STPD asserted) the
debug module asserts | NJI for one clock cycle to inject and execute individual
instructions; in the cycle where | NJI is asserted the opcode of the injected instruction
must be provided at DBA [31: 0] ; when the processor is not in the stopped state | NJ|
is ignored.

DBGJ 31: 0] Debug Out (output); when in the stopped state a nt dp (move to debug port) or svpc
(save PC) instruction is injected and executed destination data is provided at
DBGJ 31: 0] .

STPD Stopped (output); STPD asserted indicates that the processor is in the stopped state. The
processor enters the stopped state after flushing its pipeline either when STRQis asserted
by the debug module or when a st op instruction is executed.

General Rules

* To use the sf32bl debug features a separate debug module is required that connects to the
processor’s debug interface and the debug Host PC. If debug functionality is not required the
input signals of the debug port DBA [31: 0], STRQand | NJI should be tied to GND.

« Injecting and executing instructions via the debug port is possible only when the processor is in
the stopped state indicated by the STPD output signal.

e The stopped state is entered from normal operation either by asserting the STRQinput or by
executing a st op instruction.

e Toresume normal operation when the stopped state has been entered by STRQassertion STRQ
must be de-asserted.

« Toresume normal operation when the stopped state has been entered by executing a st op
instruction STRQmust be asserted and then de-asserted.

Timing

The first diagram following shows the interface timing at the beginning and end of the stopped state. The
signals of the debug and instruction fetch interfaces are shown. In cycle 2 STRQis asserted. Starting with the
next cycle the processor stops fetching new instructions. Pending instructions and instructions in the pre-
fetch buffer are executed until the pipeline is completely empty. When the pipeline is empty the STPD output
is asserted indicating that the stopped state has been reached.

The stopped state can also be entered by executing a st op instruction during normal operation. When a

st op instruction is executed remaining instructions in the pre-fetch buffer are discarded and the processor
asserts the STPD output and enters the stopped state when the execution pipeline has been flushed.

In the diagram STRQis de-asserted again in cycle 7 only 2 cycles after the stopped state has been entered.
Normally this would not make much sense but the purpose of this diagram is to illustrate the timing only at

13 Property of RACORS GmbH Rev. 0.9

(Q’ sf32bl IMA Reference Manud 18.03.2014
RACORS

the beginning and end of the stopped state.

In the next cycle after STRQ has been de-asserted the processor starts fetching instructions again. One cycle
later in cycle 9 the STPD output is de-asserted indicating that the processor has resumed normal operation.

cycle 1 2 3 4 5 6 7 8 9 10 11
cLK Juuuy Jududuuy
STRQ
STPD _
1A20:0] X X X X XXX
I FNS
| FSM
s XXX XXX

Entering and leaving the stopped state

The second diagram shows the timing of instruction injection and data I/O via the debug port while the
processor is in the stopped state. The STRQsignal is not shown because it is not relevant if the stopped state
has been entered due to STRQassertion or after the execution of a st op instruction. Regarding interface
timing there are three types of instruction injection:
1. Injection with data input from DGBI [31: 0] ; only the dedicated debug instructions nf dp and r spc
take a source operand from the debug port
2. Injection with data output to DGBJ 31: 0] ; only the dedicated debug instructions nt dp and svpc
output a destination operand to the debug port
3. Injection with no data I/O; all other instructions are of this type
The injection and execution behavior is common to all three types. The debug module asserts | NJI for one
cycle and drives the opcode of the instruction at DBA [31: 0] . Three cycles later the processor de-asserts
STPD which indicates the execution of the injected instruction. STPD is asserted again when execution has
finished and the pipeline is completely empty. The number of cycles STPDis de-asserted depends on the
injected instruction. For some flow instructions like SVPC or RSPC STPD is de-asserted for only one cycle. For
most computation instructions it is 2 or 3 cycles. For load/store instructions with zero wait states data access
it is at least 5 cycles. Data access wait states add to the STPD de-asserted time. The debug module must
wait for STPD being de-asserted and asserted again before it can inject the next instruction.

A type 1 example starts in cycle 2 where opcode i0 is injected. In the following cycle when | NJI is de-
asserted the source operand dO is driven at DBA [31: 0] . It must be kept stable until STPD is re-asserted.
A type 2 example starts in cycle 8 where opcode il is injected. When STPD is re-asserted in cycle 13 the
destination operand d1 is available at DBGJ 31: 0] . The example shows the behavior of an nt dp
instruction. The second type 2 instruction svpc has different timing. STPD is de-asserted for only one cycle
and the destination operand appears at DBGJ 31: 0] already in that cycle. The debug module should read
the destination operands of type 2 instructions when STPD has been re-asserted. DBGJ 31: 0] is always
valid then and remains stable until the next type 2 instruction is injected.

A type 3 example starts in cycle 14 where opcode i2 is injected. STPD is de-asserted for three cycles which
is a typical value for computation instructions

14 Property of RACORS GmbH Rev. 0.9

(Q’ sf32bl IMA Reference Manud

18.03.2014
RACORS
cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
cLK Uy uududuuddyudar
STPD / -
DBG [31: 0] iOX dc il i2
I NJI \ \
DBGJ 31: 0] di
Instruction injection and execution
3.5 Reset
Signals
RST Reset (input); this is a synchronous reset; when RST is asserted the processor is reset

General Rules

with the next rising edge of CLK.

« RST can be asserted at any time. The processor does not wait for any pending interface transactions
or instructions.

« RST needs to be asserted for only one active edge of CLK to fully reset the processor.

Timing

The diagram shows the RST assertion and release timing. Only signals that are directly affected are shown.
Output signals not shown are either undefined or keep their state. Beside RST the only input signal relevant
forresetis | RN[3: 0] .
In cycle 2 RST is asserted. In the following cycle (3) instruction fetching stops, | FT, | FNS and | FSMare de-

asserted. One cycle later (4) all control outputs of the processor are de-asserted. | A] 29: 0] takes the value
of the reset start address a0: | Al 29: 26] =1 RN[3: 0] and | A[25: 0] = 0. This state remains unchanged

as long as RST remains asserted.

15

Property of RACORS GmbH

Rev. 0.9

-
"
(2 sf32bl IMA Reference Manud

18.03.2014

RACORS

In cycle 6 RST is de-asserted. | RN 3: 0] must continue to provide the upper 4 bits of the reset start address
for the following 2 cycles. In cycle 8 instruction fetching starts from a0 with | FSMasserted (system mode).

cycle 1 2 3 7 10

ak yyuuuyyyuuyl
X_

RST

| RN[3: 0] a0[29: 26]

| Al 29: 0] XX a0 al

I FT

[
XX
ez

I FNS

| FSM

DBS] 3: 0]

DVE

DSM

I ACK

STPD

Reset assertion and release

I RN[3: 0] can take any value from this point.

16 Property of RACORS GmbH

Rev. 0.9

(Q’ sf32bl IMA Reference Manud

RACORS

4

18.03.2014

Instruction Execution Timing

4.1 Effective Execution Times

The following table provides effective execution times for all sf32bl instructions except for the dedicated
debug instructions mt dp, nf dp, svpc, r spc and st op which are not for use in normal program code
sequences.
The numbers provided in the Cycles column are best case numbers assuming no stalls caused by operand
dependencies or data access wait states (load/store instructions). The Stalls column contains abbreviations
of stall conditions that are further explained in the “Stall Conditions” section later in this chapter.
Instructions are grouped by addressing modes and common execution time properties. Instructions with
multiple addressing modes may appear in different non-consecutive places.

Instructions Addressing Mode Cycles Stalls Comment(s)
nove Cl7s Rd, CND 1 - R
conp cnpc Cl7s, Rs1 1 D1 -
addt subf
andb iorb xorb Cl6,, Rs1, Rd 1 D1 i
mcu mcs iterative
addh C32,, Rs1, Rd D1 -
addt subf addc subc | Cl2, Rsl, Rd, CND D1 -
o e ! o1 :
btst btcl bttg BTl 5y, Rs1, Rd, CND D1 -
btts BTl 5y, Rs1 D1 -
shl z shlf shru shrs | SHC5, Rs1, Rd, CND D1 -
addt subf addc subc
andb iorb xorb D1
btst btcl bttg 1 i
shl z shif shru shrs Rs0, Rs1, Rd, OND D1, D2
mul t 3 .)
T hu 1l hs D1 iterative
btts Rs0, Rs1, CND
conp cnpc RsO, Rs1 ! b1 i
Rs, DA16s, CND
Rs, (DO12s, An), CND)
D1 data access wait states
st bt Rs, (An Aul2s)*, CND 1 add to the effective
st sh Rs, (An, Ru) *, CND execution time
stlg Rs, (Rx, An), CND D1, D2
RGS, (An) + n = #of register in RGS
RGS, - (An) " b1
DA16s, Rd, CND -
(DOL2s, An), Rd, CND .
Data access wait states
| dbz | dbs (An, Aul2g) *, Rd, CND 1 D1 add to the effective
| dsz | dss (An, Ru) *, Rd, CND execution time
Idlg (Rx, An), Rd, CND D1, D2
(An) +, RGS n = #of registers in RGS
- (An), RGS n b1
17 Property of RACORS GmbH Rev. 0.9

l" sf32bl IMA Reference Manud 18.03.2014
RACORS
stie clie scie rsie |inplied 1 - -
junmp jpsr I A29 5 - -
junp jpsr implied (TA) D3 TA dependency
rtsr
. i mpl i ed 5 D4 SP dependency
rtir - -
2 branch taken
brlc | Ol6g 1 D5 branch not taken
0 loop cache hit
brxx (conditional) | Ol6g 2 D6 branch taken
1 branch not taken

4.2 Stall Conditions

Extra cycles add to best case execution times if stall conditions caused by operand dependencies occur
during instruction execution. Instructions have to wait if one or more of their source or destination operands
are scheduled to be updated by a preceding instruction that has not finished execution yet. These conditions
are instruction and addressing mode specific. Seven conditions exist named D1 to D6. Affected
instruction/addressing-mode combinations have the relevant conditions listed in the Stalls column of the
execution times table.

The following paragraphs are more detailed descriptions of individual stall conditions with hints how they can
be avoided.

Computation Latency

With the sf32bl pipeline structure register destination operands of computation instructions are updated only
one cycle after a directly following instruction reads its source operands. If the following instruction has the
same register as source operand this instruction would have to be stalled by one cycle to wait until the
source operand is ready. For most cases a forwarding mechanism is implemented that uses the ALU output
as source directly and bypasses the register file to avoid stalls. Exception is the D3 stall condition.

D1 (Source operand pending update)

The D1 stall occurs if instructions use the destination register of a directly preceding load from memory
instruction as source operand. Load from memory instructions update their destination register three cycles
after an immediately following instruction reads its source operands. As with destination operands of
computation instruction there is a forwarding mechanism that bypasses the register file and uses the load
from memory destination operand as source one cycle before it is written to the register file. But because of
three cycles latencies there is still a two-cycles stall if an instruction uses the destination register of a directly
preceding load from memory instruction as source operand.

In many cases such stalls can be avoided by instruction re-ordering so that there are at least two other
instructions between the load from memory and the instruction that uses the load destination as source.

D2 (Computation destination not forwarded)

As described under Computation Latency a forwarding mechanism bypasses the register file to avoid stalls
if instructions try to read the destination register of a directly preceding computation instruction as source
operand. But there are some exceptions where forwarding is not done because it would create critical timing
paths and decrease the processor's maximum clock rate. The following types of register source operands
are affected and cause a one-cycle stall if the register is the destination operand of the directly preceding
instruction:

» Indirect shift counts of shift instructions
e Indirect bit index of bit manipulation instructions
« Index of load/store instructions with indirect + index addressing mode

To avoid D2 stalls instructions must be re-ordered such that the instruction that generates the register
destination operand is not the directly preceding instruction.

18 Property of RACORS GmbH Rev. 0.9

"y
Q sf32bl IMA Reference Manud 18.03.2014

RACORS

D3 (TA pending update)

In principle this is the same as D1 but for register TA (Target Address) and only for the j unp and j psr
instructions with the implied addressing mode that use TA as source operand. There is no forwarding when
TA is used as indirect jump address. A preceding instruction that updates TA with a latency > the cycle
distance to the j unp/j psr with TA as source causes stall cycles. This is the case for load instructions with
TA as destination operand and a cycle distance < 3 and also for directly preceding nove instructions with TA
as destination operand.

D4 (rt sr with SP pending update)

This is similar to D3 but for register SP (Stack Pointer) and only for the r t sr instruction that uses SP as
source operand. There is no forwarding when SP is used as return address. A preceding instruction that
updates SP with a latency > the cycle distance to the rt sr causes stall cycles. This is the case for load

instructions with SP as destination operand and with a cycle distance < 3 and also for directly preceding
nove instructions with SP as destination operand.

D5 (br | ¢ with LC pending update)

Again this is similar to D3-D4 but for register LC (Loop Counter) and for br | ¢ instructions which use LC as
source operand. There is no forwarding when LC is used as source operand of loop counter branches. A
preceding instruction that updates LC with a latency > the cycle distance to the br | ¢ causes stall cycles.
This is the case for load instructions with LC as destination operand and with a cycle distance < 2 and also
for directly preceding nove instructions with LC as destination operand.

D6 (br xx with unresolved speculation)

The sf32bl implements a speculation scheme for conditional branches. Conditional branch instructions do
not wait until pending CC updates of preceding instructions are completed. However a stall condition occurs
if a new conditional branch is decoded and the speculation of a preceding branch is not yet resolved. In this
case the new branch has to wait until all CC update operations of instructions that have been issued before
the preceding branch are completed. D6 stalls typically occur with instruction sequences where two or more
conditional branches are placed close together.

4.3 Loop Cache

The sf32bl implements a single entry loop cache to accelerate the performance of simple loops. When a

br | ¢ (loop counter branch) instruction with backward branch direction is executed and the loop cache is not
active yet the processor latches start-address, end-address and the opcode of the first instruction of the loop
in internal registers.

From the second iteration on the last instruction (loop branch) and the first instruction of the loop are not
fetched from instruction memory to eliminate the 2-cycle latency that the non-sequential instruction fetch of
the loop branch would cause. Instead the loop branch is implicitly executed and the opcode of the first
instruction is retrieved from the register where it has been stored when the cache became active. As a result
the effective execution time of the loop branch is zero cycles.

If beside the implicit loop branch any other non-sequential instruction execution is encountered the loop
cache is de-activated immediately. E.g. if a conditional branch inside the loop is taken the cache is de-
activated and the next execution of the loop branch is done normally as in the first iteration but with this
normal br | ¢ execution the cache is activated again. If in the next iteration the conditional branch is not
taken the cache concept will take effect and the next loop back branch will be done with zero cycles
effective.

19 Property of RACORS GmbH Rev. 0.9

"y
Q sf32bl IMA Reference Manud 18.03.2014

RACORS
5 Compatibility
5.1 Software

The sf32bl is fully compatible with the sf32 (b) (base) ISA.

5.2 Hardware

The sf32bl interface signals and timing are the same as those of the sf32bu and sf32dl. These three
processors can replace each other without changing any of the surrounding hardware.

5.3 Replacement Options

Sf32bl and sf32bu are software compatible and can replace each other regarding both hardware and
software.

The sf32dl can replace sf32bu and sf32bl regarding both hardware and software because it supports the
sf32 (b) (base) ISA.

20 Property of RACORS GmbH Rev. 0.9

