~

RACORS

sf32bu

32-bit microprocessor

IMA (Implementation Architecture)
Reference Manual

Revision 1.0
18 March 2014

Author: Martin Raubuch

Property of RACORS GmbH

(Q’ sf32bu IMA Reference Manual

18.03.2014
RACORS
Revision History
Revision | Date
0.9 24Dec2013 | First version
1.0 18Mar2014 | Minor updates and typo fixes
2 Property of RACORS GmbH Rev. 0.9

l@’ sf32bu IMA Reference Manud 18.03.2014
RACORS
Table of contents
(I O YT YT TP 4
N 1 1 o Yo U o3 o] o R 4
1.2 FEAUIE SUMMAIY ...ttt e et e e et e e e e e e e e e e ee b e e e e eesa e e eennaaaaeees 4
1.3 Scope of thiS MANUALcooeviiiei e 4
A V(O @)Y =T Y Y 5
3 INtErface DELaAIlS. 7
G 20 N 1 11 (8 Lo 1[0 o N T =Y (o o T 7
G T BT 1 = AN o] ol =11 TSP 9
TG I [1= ¢ (U] o PP PPPPPTTT 11
K I = o o 13
B RSB i 15
4 Instruction EXecution TiMING.........oieiiiiiiiriiiieeeiis e e e e e e ea e e ene 17
4.1 Effective EXECULION TIMES ...ccuuiiiii it e e e et e e e e eaas 17
S 7= | I o T 140 1 1 18
5 CompPatibDilityuuieieii e 21
T S (01 11T | (= 21
T2 o = 10 111Y7= (= 21
RGN B LT o] F= Tot =10 0= | A o] 1o 1 21

3 Property of RACORS GmbH Rev. 0.9

l@’ sf32bu IMA Reference Manual 18.03.2014
RACORS

1 Overview

1.1 Introduction

The sf32 family of 32-bit microprocessors is targeted at general purpose control and computing applications.
With fixed length 32-bit instruction coding the architectural focus is on high clock rates and small core
implementations.

The sf32 family defines two ISAs (Instruction Set Architectures), a base (b) ISA for general purpose control &
computing and a (d) DSP ISA extension for 32-bit DSP applications. This manual is the IMA (Implementation
Architecture) reference of the sf32bu, the (u) ultra-light implementation of the sf32 (b) base ISA.

1.2 Feature Summary

The following list summarizes the sf32bu’s main features

« Focused on small core size

« 32-bit wide instruction and data interfaces

« Reqgister file with 1/1 read/write ports and one cycle read-latency, can be implemented as RAM
« Single cycle effective execution of computation instructions with one register source operand
e Two cycles effective execution of computation instructions with two register source operands
e Two cycles effective execution of most load and store instructions

e lterative shift execution with one bit per cycle

e Average IPC (Instructions Per Cycle) of 0.5 for typical code sequences

e 2 x 32-bit instruction pre-fetch buffer

« Fully synchronous design, all flip-flops are triggered with the rising edge of the clock input

e Clock rates up to 110MHz on low end FPGAs

e Clock rates >300MHz with deep sub-micron std-cell generic and low-power technologies

1.3 Scope of this manual

This sf32bu IMA reference manual contains the following detailed descriptions:
« |/O Overview, overview of interfaces and 1/O signals
* Interface Details, detailed I/O signal descriptions and interface timing

e Instruction Execution Timing, effective execution time of instructions, data dependencies and stall
conditions

« Compatibility, hardware and software compatibility, drop in replacement options

ISA specific details such as programming model and instruction set are not part of this IMA reference
manual. This information can be found in the base (b) ISA (Instruction Set Architecture) reference manual.

4 Property of RACORS GmbH Rev. 0.9

()

RACORS

sf32bu IMA Reference Manual

18.03.2014

/O Overview

sf32bu
<«—|{1A129: 0] DA[31: 0] |—»
_ <«—|IFT DJ 31: 0] }—
Instruction <«—{I FNS DBS[3: 0] —
SRR e 47 el e
—={11[31:0] DSM—>
— I RDY DI [31: 0] fe——
— liro DRDY je¢——
Interrupts { —{I R\[3: 0] DBGI [31: 0] |«—
<«—] | ACK STRQje——
Debu
Reset — = DBGO[3|1:'\lc])]I N ’
STPD|——>
Clock —{CLK
Signal Direction | Width Description
I Al 29: 0] Output 30 | Instruction Address
| FT Output Instruction Fetch
I FNS Output Instruction Fetch Non Sequential
| FSM Output 1 Instruction Fetch System Mode
I1[31:0] Input 32 | Instruction In
| RDY Input 1 Instruction Ready
I RQ Input 1 Interrupt Request
I RN[3: 0] Input 4 Interrupt Number
I ACK Output 1 Interrupt Acknowledge
RST Input 1 Reset
CLK Input 1 Clock
DA[31: 0] Output 32 | Data Address
DJ 31: 0] Output 32 | Data Out
DBS[3: 0] Output Data Byte Strobes
DV Output Data Write Enable
DSM Output Data System Mode
DI [31: 0] Input 32 Data In
DRDY Input 1 Data Ready
DBdG [31: 0] Input 32 Debug In
STRQ Input Stop Request
I NJI Input Inject Instruction
DBGJ 31: 0] Output 32 Debug Out
STPD Output 1 Stopped

Clocking

The sf32bu is a fully synchronous design. All flip flops are triggered with the rising edge of the CLK input. All
output changes occur after the rising edge of CLK. All inputs are sampled with the rising edge of CLK. To

5

Property of RACORS GmbH

Rev. 0.9

(Q’ sf32bu IMA Reference Manual 18.03.2014
RACORS

enable very small core sizes especially on FPGAs the register file can be implemented as synchronous RAM
with one cycle read latency, driven by CLK.

Control signals asserted state

All control signals are active high. The asserted state is ‘1’ and the de-asserted state is ‘0. The following
signals are affected: | FT, | FNS, | FSM | RDY, | RQ, | ACK, RST, DBS][3: 0] , DWE, DSM DRDY, STRQ | NJI ,
STPD.

Debug Interface
If the debug interface is not used inputs STRQ, | NJI and DBA [31: 0] should be connected to ground.

6 Property of RACORS GmbH Rev. 0.9

l@’ sf32bu IMA Reference Manual 18.03.2014

RACORS

3 Interface Detalils

3.1 Instruction Fetch

Signals

I Al 29: 0] Instruction Address (output); When | FT is asserted | A[29: 0] is the address of the 32-

I FT

I FNS

| FSM

bit instruction word to fetch. When | FT is de-asserted | A[29: 0] is don't care. The sf32b
ISA defines a 4 GBytes instruction address space with 32-bit instruction addresses
pointing to byte locations. Instruction addresses must be aligned on 32-bit boundaries
which means the 2 LSBs of instruction byte addresses are always zero. | A[29: 0] isa
32-bit word address and represents bits [31:2] of instruction byte addresses.

Instruction Fetch (output); | FT is the main control signal of the instruction fetch interface.
When | FT is asserted outputs | A[29: 0] , | FNS and | FSMare valid. When | FT is de-
asserted these outputs are don't care.

Instruction Fetch Non Sequential (output); When | FT is asserted | FNS indicates if the
fetch is sequential (1 A] 29: 0] = address of the preceding fetch + 1) or not (any address
due to a change in program flow). When | FT is de-asserted | FNS is don't care.

Instruction Fetch System Mode (output); When | FT is asserted | FSMindicates if the fetch
is from the system mode (I FSM= 1) or application mode (I FSM= 0) address space.
When | FT is de-asserted | FSMis don't care.

I'1]31: 0] Instruction In (input); When | RDY is asserted | | [31: 0] must be a valid instruction word.

I RDY

When | RDY is de-asserted | | [31: 0] is ignored.

Instruction Ready (input); | RDY is the acknowledge handshake signal following | FT
instruction fetch requests. | RDY must be asserted only as a response to an | FT request.
For zero wait state instruction fetches | RDY must be asserted in the cycle following an

| FT request. Wait states are inserted by delaying the assertion of | RDY by the required
#of clock cycles.

General Rules
The sf32bu instruction fetch timing is designed for direct connection of synchronous memories. The following

rules apply:

Based on a handshake with | FT as request and | RDY as acknowledge

For zero wait states fetches | | [31: 0] must be provided and | RDY must be asserted in the
next cycle following an | FT request.

If I 1[31: 0] is not ready in the next cycle following | FT an arbitrary number of wait cycles can
be inserted by delaying the assertion of | RDY until I | [31: 0] is ready.

| FT asserted with | FNS de-asserted indicates sequential fetches. The address | A[29: 0] is
the address of the preceding fetch + 1.

| FT and | FNS both asserted indicate non-sequential fetches. | A[29: 0] can have any value
with no relation to the preceding fetch. A preceding fetch not yet completed is aborted. The next
| RDY and related | | [31: 0] are interpreted as response to the non-sequential fetch.

When | FT is asserted | FSMindicates if the fetch is from the system mode address space

(I FSM= 1) or from the application mode address space (I FSM= 0). Bus controllers can use

| FSM to protect system code from execution in the application mode.

| FSMis asserted for all instruction fetches of interrupt routines.

If system mode protection is not required | FSMcan be ignored.

Sequential Fetches

The figure below shows sequential instruction fetches in application mode with | FNS and | FSMde-asserted.
There are gaps with no instruction fetches in cycles 1, 5 and 7. This is because typical sf32bu execution
rates are < 1 per cycle and the processor fetches sequential instructions only when there is space available
in its pre-fetch buffers. The pre-fetch buffer concept makes sure that the processor never discards and re-
reads sequential instruction words independent of instruction execution times and pipeline stalls.

The fetches in cycles 2, 3, 4, and 6 are done with zero wait states. Instruction words i0, i1, i2 and i3 read

7

Property of RACORS GmbH Rev. 0.9

"y
Q sf32bu IMA Reference Manual 18.03.2014

RACORS

from addresses a0, al, a2 and a3 are provided in the next cycle following the fetch and | RDY is asserted.
Fetching of instruction words i4 and i5 from addresses a4 and a5 in cycles 8 and 9 is done with 1 and 2 wait
states respectively. Fetching of i6 from a6 is done with zero wait states again.

The fetches with wait states show an important behavior of the sf32bu’s pipelined instruction interface. With
no pending fetch (waiting for | RDY of the preceding fetch) | FT is asserted with | A[29: 0] ,| FNS and | FSM
valid for only one cycle. The fetch from a4 in cycle 8 of the diagram illustrates the behavior. In cycle 9 the
next fetch from a5 is driven on the interface. Because the fetch from a4 is not acknowledged yet in cycle 9
the fetch from a5 remains stable on the interface. This means that bus logic that inserts wait states, e.g. to
let another client access the instruction memory must latch the instruction address and control signals. E.g. if
in the example shown below the bus controller grants access to the instruction memory to another client in
cycle 8 and then reads from a4 in cycle 9 to have i4 ready in cycle 10 the address a4 and corresponding
control signals must be latched in registers because they are not available anymore at the interface in cycle
9.

cycle 1 2 3 9 10 11 12 13 14

aLK JUuuyvyuyvuuuuyL
| A 29: 0] X aOXaEXaEXXX)@XXXXaE)C a5 a6
| FT /[_ _

I FNS

| FSM

11[31: 0] X00X OXi X1 2 XX 30000 4 i 5Xi 6XX
| RDY /[

Sequential instruction fetches with and without wait states

Non Sequential Fetches

Non sequential instruction fetches occur as a result of program flow changes (jump, branch, return or
interrupt). The processor flushes the instruction pre-fetch buffer and does not wait for | RDY of a preceding
fetch. If | RDY is asserted in the same cycle the corresponding instruction word | | [31: 0] is ignored. A
pending instruction fetch that has not been acknowledged yet when a non-sequential fetch occurs is aborted.
This means that the first | RDY following a cycle with | FNS asserted is always interpreted as acknowledge of
the non-sequential fetch.

The next figure shows some example non-sequential fetch timings. The first example is in the middle of a
fetch sequence with no wait states. In cycle 4 | FNS indicates a non-sequential fetch from a2. Instruction
word i1 from the fetch in cycle 3 is discarded. The second example shows a case where a preceding fetch is
aborted. The non-sequential fetch from a5 is started in cycle 8. Due to wait states the preceding fetch from
a4 is not completed yet. The instruction bus logic aborts this fetch and reads directly from a5. Instruction
word i5 is delivered (in the example with one wait state) in cycle 10.

In systems with no instruction fetch wait states, e.g. with a synchronous instruction memory directly
connected output | FNS can be ignored. In systems with wait states e.g. with an instruction cache or with
debug access to the instruction memory | FNS must be used to abort pending fetches.

| FSMis shown in the two instruction fetch timing diagram only for completeness of the interface signals. For
the timing its state is not directly relevant. It can be viewed as an extra address bit.

8 Property of RACORS GmbH Rev. 0.9

(Q’ sf32bu IMA Reference Manual

RACORS

18.03.2014

cycle 1 2 3 4 5 6 7 8 9 10 11 12

aLK Juuyvuyvuyuuy
| Al 15: 0] aongngxa__sxzx a4Xasy_a6]
| FNS /‘ o
11[15:0] 'OEEXEXXXXX i5)@xXX:

Non sequential instruction fetches

3.2 Data Access

Signals
DA[31: 0]

DO 31: 0]

DI [31: 0]

DBS] 3: 0]

Data Address (output); when DBS[3: 0] is asserted (!=0) DA[31: 0] is the byte address
of the data access. When DBS[3: 0] is de-asserted (==0) DA[31: 0] is don't care.

Data Out (output); for write accesses (DBS[3: 0] != 0 and DWE asserted) DQ 31: 0]
provides the data on four byte lanes. Only byte lanes with DBS[n] asserted have valid
data. DBS[0] controls DO 7: 0] , DBS[1] controls DJ 15: 8], DBS[2] controls

DJ 23: 16] and DBS[3] controls DJ 31: 24] . When DVE is de-asserted or when a
DBS[n] is de-asserted the corresponding byte lane within DO 31: 0] is don't care.

Data In (input); when DRDY is asserted as response to a read access input data is
expected at the active byte lanes of DI [31: 0] . Active byte lanes are determined by
DBS[3:0] in the cycle where the access was requested. DBS[0] controls DI [7: 0] ,
DBS[1] controls DI [15: 8], DBS[2] controls DI [23: 16] and DBS[3] controls
DI [31: 24] . When DRDY is de-asserted DI [31: 0] is ignored.

Byte Strobes (output); DBS[3: 0] is the main control signal of the data access interface.
When DBS[3: 0] is asserted (!1=0) outputs DA[31: 0] , DV\E and DSMare valid. With DVWE
asserted DJ 31: 0] provides write data on the DBS[3: 0] selected byte lanes. When
DBS[3: 0] is de-asserted these outputs are don't care. The following table summarizes
the DO 31: 0] and DI [31: 0] byte lane use. Note that for reads the DI [31: 0] byte
lanes are active in the response cycle (DRDY asserted) following a DBS[3: 0] request.

Access Type | DBS[3: 0] DA[1] DA[0] Valid Output | Expected Input

Ox1

0 DO 7: 0] DI [7: 0]

0x2

DJ 15: 8] DI [15: 8]

byte (8-bit)

0x4 DI [23: 16]

1
0 DO 23: 16]
1

0x8 DO 31: 24] DI [31: 24]

0x3

don’t DJ 15: 0] DI [15: 0]

short (16-bit)

R O|FRP|FL,|O|O

0xC care DJ 31: 16] DI [31: 16]

long (32-hit) OxF don’t care D 31: 0] DI [31:0]

Data Write Enable (output); When DSB[3: 0] is asserted (!1=0) DVE indicates if the data
access is a read (DWE=0) or write (D\\E=1); When DSBJ 3: 0] is de-asserted (==0) DVE is
don’t care

Property of RACORS GmbH Rev. 0.9

l" sf32bu IMA Reference Manual 18.03.2014
RACORS
DSM Data System Mode (output); When DSB[3: 0] is asserted (!1=0) DSMindicates if the data

access is to the system address space (DSM=1) or application address space (DSM=0);
When DSB[3: 0] is de-asserted (==0) DSMis don’t care

DRDY Data Ready (input); DRDY is the acknowledge handshake signal following DBS[3: 0] =
0 data access requests. DRDY must be asserted only as a response to a DBS[3: 0] =0
request. For zero wait state data accesses DRDY must be asserted in the cycle following
a DBS[3: 0] request. Wait states are inserted by delaying the assertion of DRDY by the
required #of clock cycles. For read accesses input data must be provided at the active
byte lanes of DI [31: 0] in the cycle where DRDY is asserted.

General Rules
As with the instruction interface the sf32bu data interface is designed for direct connection of synchronous
memories. A specialty of the (u) ultra light implementation is that ALU and load/store hardware resources are
shared. As a result the sf32bu can perform data accesses only in every second cycle. The following rules
apply:
« Based on a handshake with DBS[3: 0] as request and DRDY as acknowledge
e For zero wait access DRDY must be asserted in the next cycle following a DBS[3: 0] request;
for read accesses data must be provided at DI [31: 0] in that cycle.
e If an access can't be serviced with zero wait states an arbitrary number of wait cycles can be
inserted by delaying the assertion of DRDY.
« The maximum access rate is one access every two cycles. But the interface is still pipelined. In
case of wait states two accesses can be completed in two consecutive cycles.
e To build secure systems the DSMoutput can be used to protect critical system resources from
illegal access by application mode code. If this is not required the DSMoutput can be ignored.
* Read accesses from the interrupt vector table are done with DSMasserted.

Timing

The following diagram shows the sf32bu data access timing. Cycles 2 to 13 are zero wait state accesses of
different types (size, read/write). Cycles 14 to 18 are data accesses with wait states and show two effects
that are important to keep in mind when designing data bus control logic for the sf32bu. As with the
instruction fetch interface with no pending transaction output signals are driven for only one cycle. Example
is the 32-bit write of data d6 to address a6 in cycle 14. The processor then starts a 16-bit read from a7 in
cycle 16. Because the write from cycle 14 is not completed yet the output signals (in this case DA[31: 0] ,
DBS[3: 2] and DSM are extended until the preceding access is completed in cycle 17. In systems with data
access wait states the bus control logic must latch the output signals to be able to perform the access later
when these signals are no longer valid.

The second effect is the bus pipelining. Although the maximum access rate is one access every two cycles
the bus is still pipelined as shown in cycles 17 and 18 where two accesses are completed in two consecutive
cycles.

DSMis shown only for completeness of the interface signals. For data access timing its state is not directly
relevant. As with the instruction fetch interface it can be viewed as an extra address bit.

10 Property of RACORS GmbH Rev. 0.9

'5\335 sf32bu IMA Reference Manual 18.03.2014
cycle 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

aLK Uy uuydruuyyyuay
oo IDEDEDEDEDEDEDEmE T
DBS 0] _ /] [
DBS] 1] \ /" [\ /S
DBS| 2] /] _/ /O
DBS| 3] ava _ -l
ove /S
DSM
DI[7: 0] XX Y DX a2)X 000K
DI [15: 8] D X
DI [23: 16] XX XXX a7X
DI [31: 24] i dXOO00XX O000000a7X
DJ 7: 0] d4 dﬁm
D] 15: 8] d4)<XX@XXX>@W
DJ 23: 16] d3><XXXdE @
D] 31: 24] O a3 X004 aeXxx
DRDY /NS NN

Data access timing

3.3 Interrupts

Signals
I RQ Interrupt Request (input); | RQasserted signals an interrupt request with number
| RN[3: 0] to the processor
I RN[3: 0] Interrupt Number (input); when | RQis asserted | RN[3: 0] is the number of the
requested interrupt; when | RQis de-asserted | RN[3: 0] is ignored
I ACK Interrupt Acknowledge (output); | ACK is asserted for one cycle when the processor has

latched | RN[3: 0] and starts interrupt execution.

General Rules

e Interrupts are acknowledged and executed only if enabled (see ISA reference manual)

e The interrupt number | RN[3: 0] may be changed from cycle to cycle at any time also while
I RQis asserted. When | ACK is asserted the | RN 3: 0] of the preceding cycle has been
latched and the corresponding service routine will be executed.

« Simple interrupt controllers with no request queuing can ignore the | ACK signal

11 Property of RACORS GmbH Rev. 0.9

"y
Q sf32bu IMA Reference Manual 18.03.2014

RACORS
Timing
The following diagram is an example interrupt timing of a sf32bu system. Interrupt processing affects also
signals of the instruction fetch and data access interfaces. To keep the diagram simple and clear only
sections that are relevant for interrupt processing are shown for each signal and all instruction and data
accesses are completed with zero wait states.

The sequence starts in cycle 2 with the assertion of | RQand interrupt number Ij on | RN[3: 0] . In most
cases if the processor is not already executing another interrupt | ACK is asserted in the next cycle following
I RQ. In the example | ACK is asserted later in cycle 5 to demonstrate that | RN[3: 0] is allowed to change
while | RQis asserted. | ACK asserted in cycle 5 means that the | RN[3: 0] value Ik of cycle 4 has been
latched inside the processor and is the interrupt number that will be processed. Output | FNS is not shown in
cycles 1 to 6 because it is not relevant if the last instructions fetches before an interrupt is started are
sequential or non-sequential. | FSMis de-asserted because if not the processor would already be in an
interrupt routine and the new request would not be acknowledged.
Starting with the cycle where | ACK is asserted instruction fetching stops and the processor waits until all pre-
fetched instructions have been executed and the pipeline is completely empty. The number of cycles
required to complete this phase is not deterministic and depends on the following:

* Number of instructions in the pre-fetch buffer

« A possible pending instruction fetch (one more instruction to execute)

* Wait states of a pending instruction fetch

- Data dependencies and associated pipeline stalls caused by the instructions to execute

+ Data access wait states in case there are load/store instructions to execute
With zero wait state instruction fetches and data accesses typical times to flush the pipeline are 6-10 cycles.

oK Juuuuuy JUuuuuuy
I RQ

| R\[3: 0] XX

| ACK /[

| Al 29: 0] XXxXao

DT

| FT

=
3B

| FNS

| FSM __

|1 [31: 0] X0 X0 234
\/ _ /

| RDY

DA[31: 0] XX@(XX
DBS[3: 0] (IXE@
_

DI [31: 0] X ivXXX
DRDY _

Interrupt Timing

When the pipeline has been flushed the start address of the interrupt service routine is read from the
interrupt vector table in data memory. DBS[3: 0] = OxF in cycle 7 (32-bit data access) with DWE = 0 and
DSM= 1 (read from system address space) indicate the reading of the interrupt vector from address ai. With

12 Property of RACORS GmbH Rev. 0.9

"y
Q sf32bu IMA Reference Manual 18.03.2014

RACORS

no wait states the data access is completed in cycle 8 with DRDY asserted and the instruction vector iv
available at DI [31: 0] .

In cycle 9 fetching of instructions of the interrupt service routine starts. The first fetch from a2 (a2 = iv) is
non-sequential and | FNS is asserted. Because the pre-fetch buffers and execution pipeline are completely
empty there are at least three consecutive instruction fetches as shown in the diagram. All these fetches
have | FSMasserted while the processor is in the interrupt service routine.

3.4 Debug

Signals

DBA [31: 0] Debug In (input); this port is used to inject instructions into the processor and to provide
input data for the nf dp (move from debug port) and r spc (restore PC) instructions; when
I NJI is asserted DBG [31: 0] is interpreted as 32-bit opcode of the instruction to be
injected; when a nf dp or r spc instruction is injected source data must be provided at
DBA [31: 0] from the cycle following the assertion of | NJI .

STRQ Stop Request (input); the debug module asserts this signal to bring the processor into the
debug state. The processor stops fetching new instructions and flushes its pipeline
(executes all pending instructions and instructions in the pre-fetch buffer). As long as
STRQremains asserted the processor is held in the debug state; when STRQis released
the processor resumes normal operation.

I NJI Inject Instruction (input); when the processor is in the stopped state (STPD asserted) the
debug module asserts | NJI for one clock cycle to inject and execute individual
instructions; in the cycle where | NJI is asserted the opcode of the injected instruction
must be provided at DBA [31: 0] ; when the processor is not in the stopped state | NJI
is ignored.

DBGJ 31: 0] Debug Out (output); when in the stopped state a nt dp (move to debug port) or svpc
(save PC) instruction is injected and executed destination data is provided at
DBG] 31: 0] .

STPD Stopped (output); STPD asserted indicates that the processor is in the stopped state. The
processor enters the stopped state after flushing its pipeline either when STRQis asserted
by the debug module or when a st op instruction is executed.

General Rules

e To use the sf32bu debug features a separate debug module is required that connects to the
processor’s debug interface and the debug Host PC. If debug functionality is not required the
input signals of the debug port DBA [31: 0], STRQand | NJI should be tied to GND.

< Injecting and executing instructions via the debug port is possible only when the processor is in
the stopped state indicated by the STPD output signal.

* The stopped state is entered from normal operation either by asserting the STRQinput or by
executing a st op instruction.

« Toresume normal operation when the stopped state has been entered by STRQassertion STRQ
must be de-asserted.

« Toresume normal operation when the stopped state has been entered by executing a st op
instruction STRQ must be asserted and then de-asserted.

Timing

The first diagram following shows the interface timing at the beginning and end of the stopped state. The
signals of the debug and instruction fetch interfaces are shown. In cycle 2 STRQis asserted. Starting with the
next cycle the processor stops fetching new instructions. Pending instructions and instructions in the pre-
fetch buffer are executed until the pipeline is completely empty same as after an interrupt acknowledge.
When the pipeline is empty (6-10 cycles with no wait states) the STPD output is asserted indicating that the
stopped state has been reached.

The stopped state can also be entered by executing a st op instruction during normal operation. When a

st op instruction is executed remaining instructions in the pre-fetch buffer are discarded and the processor
asserts the STPD output and enters the stopped state when the execution pipeline has been flushed.

In the diagram STRQis de-asserted again in cycle 7 only 2 cycles after the stopped state has been entered.

13 Property of RACORS GmbH Rev. 0.9

(Q’ sf32bu IMA Reference Manual 18.03.2014
RACORS

Normally this would not make much sense but the purpose of this diagram is to illustrate the timing only at
the beginning and end of the stopped state.

In the next cycle after STRQ has been de-asserted the processor starts fetching instructions again. One cycle
later in cycle 9 the STPD output is de-asserted indicating that the processor has resumed normal operation.

cycle 1 2 3 4 5 6 7 8 9 10 11
aK Juuuy Juuyyuuuy
STRQ
I NJI
STPD B
1ar20:0) XX X000 X XX
| FT L
I FNS
| FSM >(
nsto] XXX il XXX
| RDY >(_

Entering and leaving the stopped state

The second diagram shows the timing of instruction injection and data I/O via the debug port while the
processor is in the stopped state. The STRQsignal is not shown because it is not relevant if the stopped state
has been entered due to STRQassertion or after the execution of a st op instruction. Regarding interface
timing there are three types of instruction injection:

1. Injection with data input from DGBI [31: 0] ; only the dedicated debug instructions nf dp and r spc

take a source operand from the debug port
2. Injection with data output to DGBJ 31: 0] ; only the dedicated debug instructions nt dp and svpc
output a destination operand to the debug port

3. Injection with no data I/O; all other instructions are of this type
The injection and execution behavior is common to all three types. The debug module asserts | NJI for one
cycle and drives the opcode of the instruction at DBA [31: 0] . Three cycles later the processor de-asserts
STPD which indicates the execution of the injected instruction. STPD is asserted again when execution has
finished and the pipeline is completely empty. The number of cycles STPD is de-asserted depends on the
injected instruction. For some flow instructions like SVPC or RSPC STPD is de-asserted for only one cycle. For
most computation instructions it is 2 or 3 cycles. For load/store instructions with zero wait states data access
it is at least 4 cycles. Data access wait states add to the STPD de-asserted time. The debug module must
wait for STPD being de-asserted and asserted again before it can inject the next instruction.
A type 1 example starts in cycle 2 where opcode i0 is injected. In the following cycle when | NJI is de-
asserted the source operand dO is driven at DBA [31: 0] . It must be kept stable until STPD is re-asserted.
A type 2 example starts in cycle 8 where opcode il is injected. When STPD is re-asserted in cycle 13 the
destination operand d1 is available at DBGJ 31: 0] . The example shows the behavior of an nt dp
instruction. The second type 2 instruction svpc has different timing. STPD is de-asserted for only one cycle
and the destination operand appears at DBGJ 31: 0] already in that cycle. The debug module should read
the destination operands of type 2 instructions when STPD has been re-asserted. DBGJ 31: 0] is always
valid then and remains stable until the next type 2 instruction is injected.
A type 3 example starts in cycle 14 where opcode i2 is injected. STPD is de-asserted for three cycles which
is a typical value for computation instructions

14 Property of RACORS GmbH Rev. 0.9

(Q’ sf32bu IMA Reference Manual 18.03.2014
RACORS

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

JURNRERR AR R R R RN

cycle 1 2

aLk Juya
STPD /o

DBGI [31: 0] i 0 de i 1X i 2 X000

I NJI \

DBG] 31: 0] X d1

Instruction injection and execution

3.5 Reset

Signals
RST Reset (input); this is a synchronous reset; when RST is asserted the processor is reset
with the next rising edge of CLK.

General Rules

« RST can be asserted at any time. The processor does not wait for any pending interface transactions
or instructions.
« RST needs to be asserted for only one active edge of CLK to fully reset the processor.

Timing

oLk Judduuuuuy

RST
| RN[3: 0] a0[29: 26] X X X
| A] 29: 0] XXX a0 al >@X:

| FT

I FNS

| FSM X /[

DBS] 3: 0] X

DVE X

DSM

I ACK

STPD X

Reset assertion and release

The diagram shows the RST assert and release timing. Only signals that are directly affected are shown.
Output signals not shown are either undefined or keep their state. Beside RST the only input signal relevant
forresetis | RN[3: 0] .

15 Property of RACORS GmbH Rev. 0.9

(Q’ sf32bu IMA Reference Manual 18.03.2014
RACORS

In cycle 2 RST is asserted. In the following cycle (3) instruction fetching stops, | FT, | FNS and | FSMare de-
asserted. One cycle later (4) all control outputs of the processor are de-asserted. | A] 29: 0] takes the value
of the reset start address a0: | Al 29: 26] =1 RN[3: 0] and | A[25: 0] = 0. This state remains unchanged
as long as RST remains asserted.

In cycle 6 RST is de-asserted. | RN 3: 0] must continue to provide the upper 4 bits of the reset start address
for the following 2 cycles. In cycle 8 instruction fetching starts from a0 with | FSMasserted (system mode).

| RN[3: 0] can take any value from this point.

16 Property of RACORS GmbH Rev. 0.9

(Q’ sf32bu IMA Reference Manual

RACORS

4

18.03.2014

4.1 Effective Execution Times

The following table provides effective execution times for all sf32bu instructions except for the dedicated
debug instructions mt dp, nf dp, svpc, r spc and st op which are not for use in normal program code
sequences.
The numbers provided in the Cycles column are best case numbers assuming no stalls caused by operand
dependencies or data access wait states (load/store instructions). The Stalls column contains abbreviations
of stall conditions that are further explained in the “Stall Conditions” section later in this chapter.
Instructions are grouped by addressing modes and common execution time properties. Instructions with
multiple addressing modes may appear in different non-consecutive places.

Instruction Execution Timing

Instructions Addressing Mode Cycles Stalls Comment(s)
nove Cl7s, Rd, CND 1 D2 -
conp cnpc Cl7s, Rs1 1 D1 -
addt subf
andb iorb xorb Cl6y, Rs1, Rd 1 D1, D2]
mcu mcs iterative
addh C32,, Rs1, Rd D1, D2 -
addt subf addc subc | C12, Rs1, Rd, CND D1, D2 -
e L 1| o2 :
btst btcl bttg BTl 54, Rs1, Rd, CND 1 D1, D2 -
btts BTl 5., Rs1 1 D1 -
shlz shlf shru shrs | SHC5, Rs1, Rd, CND 1+n D1, D2 n = shift count, see note
addt subf addc subc
andb iorb xorb 2 2 register read cycles
btst btcl bttg
shlz shlf shru shrs Rs0, Rs1, Rd, OND 3+n D1, D2 n = shift count, see note
nmul t 4 . _
P E——— s iterative
btts Rs0, Rs1, CND 2 ,
P — RSO, Rs1 5 D1 2 register read cycles
Rs, DA16s, CND
Rs, (DO12s, An) , CND 2 .

D1 data access wait states
st bt Rs, (An, Aul2g) *, CND add to the effective
stsh Rs, (An, Ru) *, CND execution time
stlg Rs, (Rx, An), CND 3 D1, D3 o

RGS, (An) + o i, n = #of register in RGS
RGS, - (An)
DA16s, Rd, CND -
(DOL2s, An), Rd, CND .
2 Data access wait states
| dbz | dbs (An, Aul2s) ™, Rd, CND D1 add to the effective
| dsz | dss (An, Ru) *, Rd, CND execution time
[dlg (Rx, An), Rd, CND D1, D3
(An) +, RGS 3 n = #of registers in RGS
-(An), RGS 2*n ol
17 Property of RACORS GmbH Rev. 0.9

(0’ sf32bu IMA Reference Manual 18.03.2014
RACORS
stie clie scie rsie |inplied 1 - -
junp j psr | A29, 2 i -
junp j psr implied (TA) 3 D4 TA dependency
rtsr
. i ol i ed 3 D5 SP dependency
rtir - -
br al | Ol6g 2 - -
brl | OL6e 2 D6 branch taken
1 branch not taken
brxx (conditional) | Ol6g 2 D7 branch taken
1 branch not taken

Shift Instructions

A special case exist regarding effective execution times of shift instructions: with shift count n=1 the
execution time is 1 with the SHC5;, Rs1, Rd, CND addressing mode (instead of 1+n = 2) and is 3 with the
Rs0, R1, RD, CND addressing mode (instead of 3+n = 4)

4.2 Stall Conditions

Extra cycles add to best case execution times if stall conditions occur during instruction execution. Two types
of stall conditions exist for the sf32bu:

1. Resource constraints; a pipeline architecture performs multiple actions on multiple instructions in the
various pipeline stages simultaneously and it can happen that more than one stage tries to use the
same hardware resource. In such cases one stage takes priority and the other has to wait. There is
only one condition of this type named R1.

2. Operand dependencies; instructions have to wait if one or more of their source or destination
operands are scheduled to be updated by a preceding instructions that has not finished execution
yet. These conditions are instruction and addressing mode specific. Seven conditions exist named
D1 to D7. Affected instruction/addressing-mode combinations have the relevant conditions listed in
the Stalls column of the execution times table.

The following paragraphs are more detailed descriptions of individual stall conditions with hints how they can
be avoided.

R1 (Register write)
The sf32bu register file has a single write port accessed by the ALU output and by loads from data memory.
Because load instructions have two more pipeline stages compared to computation instructions it can
happen that a computation instruction following a load instruction tries to write its destination operand in the
same cycle as the load. There are two cases with different solutions if this conflict occurs:
1. The destination registers are different; the load instruction takes priority because it was first in
sequence and the computation instruction has to wait (is stalled).
2. The destination register is the same; the computation instruction takes priority because it is second
in sequence and overwrites the destination of the load. This case is connected to the D2 condition.
This condition is caused by the RAM implementation of the register file and is difficult to avoid. The following
can be done to reduce the statistical probability:
e Avoid computation instructions as the second instruction following a load instruction

e Group loads from memory together as much as possible; means avoid frequent switching between
load and computation instructions.

18 Property of RACORS GmbH Rev. 0.9

l@’ sf32bu IMA Reference Manual 18.03.2014
RACORS

Computation Latency

With the sf32bu pipeline structure register destination operands of computation instructions are updated only
one cycle after a directly following instruction reads its source operands. If the following instruction has the
same register as source operand this instruction would have to be stalled by one cycle to wait until the
source operand is ready. For most cases a forwarding mechanism is implemented that uses the ALU output
as source directly and bypasses the register file to avoid stalls. Exception is the D3 stall condition.

D1 (Source operand pending update)

The D1 stall occurs if instructions use the destination register of a directly preceding load from memory
instruction as source operand. Load from memory instructions update their destination register two cycles
after an immediately following instruction reads its source operands. As with destination operands of
computation instruction there is a forwarding mechanism that bypasses the register file and uses the load
from memory destination operand as source one cycle before it is written to the register file. But because of
two cycles latencies there is still a one cycle stall if an instruction uses the destination register of a directly
preceding load from memory instruction as source operand.

In many cases such stalls can be avoided by instruction re-ordering so that there is at least one other
instruction between the load from memory and the instruction that uses the load destination as source.

D2 (Destination operand pending update)

This affects all instructions with register destination operands. In the cycle where computation instructions
update register destination operands the register destination operand of a directly preceding load from
memory instruction has not been updated yet. If both instructions have the same destination register the
computation instruction has to be stalled until the load from memory has updated its destination. In fact the
sf32bu detects this case and stalls the computation instruction until the load tries to write the destination. But
then in this cycle the computation takes priority and the operand from memory is never written (see also R1
condition).

In closed software functions this case should never occur because it doesn’'t make sense to load a value
from memory into a register and then overwrite the register with the next instruction without using it as
source operand. It's necessary anyway to detect and implement this stall condition. It can occur e.g. at the
end of interrupts if the interrupt service routine restores registers from the stack (loads from memory) and the
first instruction of the interrupted code sequence e.g. is a move to one of the restored registers.

D3 (Computation destination not forwarded)

As described under Computation Latency a forwarding mechanism bypasses the register file to avoid stalls
if instructions try to read the destination register of a directly preceding computation instruction as source
operand. But there are some exceptions where forwarding is not done because it would create critical timing
paths and decrease the processor's maximum clock rate. The following types of register source operands
are affected and cause a one-cycle stall if the register is the destination operand of the directly preceding
instruction:

» Indirect shift counts of shift instructions

* Indirect bit index of bit manipulation instructions

« Index of load/store instructions with indirect + index addressing mode

To avoid D3 stalls instructions must be re-ordered such that the instruction that generates the register
destination operand is not the directly preceding instruction.

D4 (TA pending update)

In principle this is the same as D1 but for register TA (Target Address) and only for the j unp and j psr
instructions with the implied addressing mode that use TA as source operand. There is no forwarding when
TA is used as indirect jump address. A preceding instruction that updates TA with a latency > the cycle
distance to the j unp/j psr with TA as source causes stall cycles. This is the case for load instructions with
(An) +, RGS or - (An) , RGS addressing mode and with TA in the register list and a cycle distance < 2 and
also for directly preceding move instructions with TA as destination operand.

D5 (rt sr with SP pending update)

This is similar to D4 but for register SP (Stack Pointer) and only for the r t sr instruction that uses SP as
source operand. There is no forwarding when SP is used as return address. A preceding instruction that
updates SP with a latency > the cycle distance to the rt sr causes stall cycles. This is the case for load

19 Property of RACORS GmbH Rev. 0.9

l@’ sf32bu IMA Reference Manual 18.03.2014
RACORS

instructions with (An) +, RGS or - (An) , RGS addressing mode and with SP in the register list and with a
cycle distance < 2 and also for directly preceding move instructions with SP as destination operand.

D6 (br | ¢ with LC pending update)

Again this is similar to D4-D5 but for register LC (Loop Counter) and for br | ¢ instructions which use LC as
source operand. There is no forwarding when LC is used as source operand of loop counter branches. A
preceding instruction that updates LC with a latency > the cycle distance to the br | ¢ causes stall cycles.
This is the case for load instructions with (An) +, RGS or - (An) , RGS addressing mode and with LC in the
register list and with a cycle distance < 2 and also for directly preceding computation instructions with LC as
destination operand.

D7 (br xx with CC pending update)

This stall condition affects conditional branches which use the condition codes register CC as source
operand. There is no forwarding of the CC source operand. If the last preceding instruction that updates CC
has a cycle distance < 2 the conditional branch will stall until CC is updated. If a CC updating instruction is
directly preceding a conditional branch there will be two stall cycles. To avoid such stalls instructions should
be re-ordered if possible.

20 Property of RACORS GmbH Rev. 0.9

"y
Q sf32bu IMA Reference Manual 18.03.2014

RACORS
5 Compatibility
5.1 Software

The sf32bu is fully compatible with the sf32 (b) (base) ISA.

5.2 Hardware

The sf32bu interface signals and timing are the same as those of the sf32bl and sf32dl. These three
processors can replace each other without changing any surrounding hardware.

5.3 Replacement Options

Sf32bu and sf32bl are software compatible and can replace each other regarding both hardware and
software.

The sf32dl can replace sf32bu and sf32bl regarding both hardware and software because it supports the
sf32 (b) (base) ISA.

21 Property of RACORS GmbH Rev. 0.9

